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Goals

* Let you know what's there

e (Get feedback

* Hope: KDE embraces & extends tooling infrastructure




Overview

Coding

Debugging

Profiling

Deploying

Ot digis

GUI (Qt Creator)
QML/JS Editor
Qt Quick Designer

QML Debugger
Inspector
Console

QML Profiler

Application Templates

Command Line

Console APIs

Console APlIs
gmilprofiler

gmibundle
gmimin




Coding

* Qt Creator  Kate / KDevelop
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Coding - .qmltypes files

* Metadata about types in C++ plugins
* Should be part of every deployed plugin

- gmlplugindump -notrelocatable MyModule 1.0

Module 1
- Good way to check for APl changes! Component {
name: "OmlAccelerometer”
prototype: "OmlSensor"
exports: [
"QtSensors/Accelerometer 5.0,
"QtSensors/Accelerometer 5.1"
1
exportMetaObjectRevisions: [0, 1]

Enum { _
name: "AccelerationMode"
values: {

"Combined": O,
"Gravity": 1,
"User": 2




Coding - Qt Quick Designer

> Type

Type Button

e \Write self-contained sy —
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. ¥ Visibility
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* Prefer declarative style 3 -

* Expect different APl usages
in C++ types

¥ QML Components

Eutton

Display

w Qt Quick - Basic




Debugging

 Environment variables « JSAPI

- QT_DEBUG_PLUGINS -

console.log()

- QML_IMPORT_TRACE e JSAPI-Qt5

(grep for _
BOOL CONFIG_OPTION)

console.log(), console.warn(),
console.error(), console.assert() ...

console.trace()
console.exception()

console.count()



Debugging — Qt Creator

* JS Debugger QML Inspector

- Breakpoints, stepping, variable - Objects & Properties

' tion ...
inspection - (->GammaRay)

- Mixed with C++ debugger or
standalone

Inspector tools

- Apply on Save

- Select/Zoom

JS Console




Debugging — Remote API

* Qt Creator debugger/profiler needs in-process functionality

e Enable TCP Server:

-  Compile with QT_DECLARATIVE_DEBUG define (Qt Quick 1)
- Compile with QT_QML_DEBUG define (Qt Quick 2)

- Qt gmitooling/ plugins required at runtime

* Application is started with '-gmljsdebugger=port:XXX,block'

 Protocol is extensible!

digia



Profiling

e Qt Creator QML Profiler  Environment Variables
- QML engine state -  QML_SHOW_FRAMERATE (Qt 4)
Painting (Qt 5: Animations) - QSG_RENDER_TIMING (Qt 5)
Compiling « JSAPI(Qt5)
Creating

Binding — console.time(), console.timeEnd()

Handling Signal - console.trace(), console.traceEnd()

Debug binding loops « gmlprofiler command line tool
Check for optimized bindings

Qt 5: V8 sample based profiler

digia



Deployment

* Different paradigms * gmimin (Qt 5)

- Viewer vs standalone * gmlbundle (Qt 5)

- Files vs Qt resouces vs bundles

* One topic for the QtCS :)




Thank you!

www.qt.digia.com
(btw, we're hiring ;)

digia


http://www.qt.digia.com/
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