Qt

Qt Quick Tooling

How to make the most out of Qt Quick

Kai Kohne

Long time Qt Developer
(and KDE user)

kai.koehne@digia.com

kkoehne on freenode

Qt Creator

- Qt Quick Designer
- QML Debugger
- QML Profiler

Installer Framework

MinGW installer

Qt 5 Release Team

Goals

* Let you know what's there

e (Get feedback

* Hope: KDE embraces & extends tooling infrastructure

Overview

Coding

Debugging

Profiling

Deploying

Ot digis

GUI (Qt Creator)
QML/JS Editor
Qt Quick Designer

QML Debugger
Inspector
Console

QML Profiler

Application Templates

Command Line

Console APIs

Console APlIs
gmilprofiler

gmibundle
gmimin

Coding

* Qt Creator Kate / KDevelop

- Syntax Highlighting Plasmate

- Semantic Checks } q contimepng| ~
SamegameText { ontent/gfxficon-time.png .
1d: puzzleMoves 0 .EH F4 |:I:|
— I I anchors { left: ps 1; top: parent.top}
COde NaVIQatlon text: '<font color O [] Is-moves
opaclty: gameCanva
- Code Refactorin : -
oae r~eractori g SamegameText {
Image ¥
. . < Follow Symbol Under Cursor F2
- Qt Quick Designer | s Culshity
Rename Symbol Under Cursor Ctri+Shift+R
id: g show Ot Quick Toolbar Ctrl+Alt+5pace
ancho ; anTa . n an . [wlal .
Refactoring Move Comnponent into Separate File
??fﬂgi Auto-indent Selection Ctrl+ Wrap Component in Loader
1| Toggle Comment Selection Ctri4/
r "
r L-) Faste Cil+V vas.gameOver
o Pastefrom Clipboard History Ctrl+Shift+v

Add UTF-8 BOM on Save .gameDuration)/ 1000.0);

Coding - .qmltypes files

* Metadata about types in C++ plugins
* Should be part of every deployed plugin

- gmlplugindump -notrelocatable MyModule 1.0

Module 1
- Good way to check for APl changes! Component {
name: "OmlAccelerometer”
prototype: "OmlSensor"
exports: [
"QtSensors/Accelerometer 5.0,
"QtSensors/Accelerometer 5.1"
1
exportMetaObjectRevisions: [0, 1]

Enum { _
name: "AccelerationMode"
values: {

"Combined": O,
"Gravity": 1,
"User": 2

Coding - Qt Quick Designer

> Type

Type Button

e \Write self-contained sy —

- column

Id

Position X o 280.0 [
~ % Row &

elements o e

. ¥ Visibility
Visibility + Visible
~ Clip

* Prefer declarative style 3 -

* Expect different APl usages
in C++ types

¥ QML Components

Eutton

Display

w Qt Quick - Basic

Debugging

 Environment variables « JSAPI

- QT_DEBUG_PLUGINS -

console.log()

- QML_IMPORT_TRACE e JSAPI-Qt5

(grep for _
BOOL CONFIG_OPTION)

console.log(), console.warn(),
console.error(), console.assert() ...

console.trace()
console.exception()

console.count()

Debugging — Qt Creator

* JS Debugger QML Inspector

- Breakpoints, stepping, variable - Objects & Properties

' tion ...
inspection - (->GammaRay)

- Mixed with C++ debugger or
standalone

Inspector tools

- Apply on Save

- Select/Zoom

JS Console

Debugging — Remote API

* Qt Creator debugger/profiler needs in-process functionality

e Enable TCP Server:

- Compile with QT_DECLARATIVE_DEBUG define (Qt Quick 1)
- Compile with QT_QML_DEBUG define (Qt Quick 2)

- Qt gmitooling/ plugins required at runtime

* Application is started with '-gmljsdebugger=port:XXX,block'

 Protocol is extensible!

digia

Profiling

e Qt Creator QML Profiler Environment Variables
- QML engine state - QML_SHOW_FRAMERATE (Qt 4)
Painting (Qt 5: Animations) - QSG_RENDER_TIMING (Qt 5)
Compiling « JSAPI(Qt5)
Creating

Binding — console.time(), console.timeEnd()

Handling Signal - console.trace(), console.traceEnd()

Debug binding loops « gmlprofiler command line tool
Check for optimized bindings

Qt 5: V8 sample based profiler

digia

Deployment

* Different paradigms * gmimin (Qt 5)

- Viewer vs standalone * gmlbundle (Qt 5)

- Files vs Qt resouces vs bundles

* One topic for the QtCS :)

Thank you!

www.qt.digia.com
(btw, we're hiring ;)

digia

http://www.qt.digia.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Content 1
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

