% APPS ON SPEED

IMPROVING THE PERFﬂRMANCE ﬂF (-+-+ APPLICATIONS

|||||||||||||||||||||||

4

http://milianw.de/
mailto:mail@milianw.de

OUTLINE

e Motivation
e Preparations
e Tooling
m Linux Perf
= Intel® VTune™ Amplifier
= Valgrind: Callgrind & Massif
= Ppmap
= mallocinfo

MOTIVATION

e Faster is (perceived) better
e Run Everywhere
e Do More

PREPARATIONS

LET OTHERS WORK FOR YOUR

Enable optimizations and debug symbols.

cmake -DCMAKE BUILD TYPE=RelWithDebInfo
i.e. let it generate Makefiles containing:
g++ -02 -g ...

TESTING TESTING TESTING

e Preventregressions, keep functionality - don't
overoptimize.

e Don't be afraid of (extensive?) refactoring.

e \Write standalone benchmarks.

THE ROOT OF ALL EVIL

e Don't microoptimize, know the 20/10 rule.
e Beware of premature optimizations!
e Yet also keep premature pessimizations in mind.

KNOWLEDGE IS KING

e Knowing the ins and outs of your codebase and libraries

allows for true optimizations.
e A better algorithm often yields more performance, than

optimizing a bad alternative.
e Be aware: "Faster" code might be slower for smaller

datasets.

TOOLING

LINUX PERF

e Fast, sampling based -Wall time profiling.
e Versatile: hardware & software counters, tracepoints
e Cross platform: works wherever Linux runs

LINUX PERF

Find system-wide hotspots.

Profile across process boundaries.

$ sudo perf top

Samples:
10.
10.

HRRERERRRERNNN

67
25
.63
.42
.05
.87
.12
.66
.57
.38
.37
.18
.13

%
%
%
%
%
%
%
%
%
%
%

o
i)

%

10K of event 'cycles', Event count

1ibQtGui.so0.4.8.5
libc-2.17.s0
1ibQtCore.so0.4.8.5
Xorg

perf

libc-2.17.s0

perf

libc-2.17.s0

perf

[kernel]

[kernel]
libc-2.17.5s0
libglib-2.0.50.0.3600.3

- - xx- - -
e e e e))))) e)]]

e e e
- - - - - .

approx.):

2036162123
0x0000000000230f07
__memcpy_ ssse3 back
Ox00000000001a7d17
Ox000000000003ff6f
symbol filter

_int malloc

d print comp.part.8
__strcmp sse4?
symbols insert
unix poll

fget light
__strstr sse42
Ox0000000000086e9d

LINUX PERF

Profile individual processes, see callgraphs.

$ perf record -g dwarf <yourapp>
or attach to a running app:
perf record -g dwarf -p $(pidof <yourapp>)

$ perf report

+ 7.00% kdevelop 1ibQtCore.so0.4.8.4 [.] Ox00000000000b71e5
+ 4.52% kdevelop 1libsqglite3.s0.0.8.6 [.] OxO00000000000279f4
+ 2.45% kdevelop libkdecore.so0.5.10.3 [.] OxO00000000000ad310
- 2.27% kdevelop 1libc-2.17.so0 [.] int malloc

- _int malloc

- 94.29% malloc
- 30.10% operator new(unsigned long)
- 8.50% KDevelop: :DUContext::findDeclarations (KDevelop::Identifier...
- 72.20% CMakeProjectVisitor::createUses(CMakeFunctionDesc const&)
- CMakeProjectVisitor::walk(QList<CMakeFunctionDesc> const§, ...
- 70.44% (MakeProjectVisitor::visit(IfAst const*)
IfAst::accept(CMakeAstVisitor*) const

LINUX PERF

Gather performance counter statistics.

$ perf stat <yourapp>

Performance counter stats for '<yourapp>':

5606.202068 task-clock # 0.473 CPUs utilized
604,632 context-switches # 0.108 M/sec
146 cpu-migrations # 0.026 K/sec
1,740 page-faults # 0.310 K/sec
5,983,888,876 cycles # 1.067 GHz [82.
3,373,405,595 stalled-cycles-frontend # 56.37% frontend cycles idle [82.
2,305,588,563 stalled-cycles-backend #* 38.53% backend cycles idle [67.
5,558,174,058 instructions # 0.93 1insns per cycle
0.61 stalled cycles per insn [83.
1,224,492,195 branches # 218.417 M/sec [82.
22,178,629 branch-misses # 1.81% of all branches [83.

11.845618581 seconds time elapsed

(o]
S

o°

Ul 0o
w N
o

o°

(@)}
N

o°

O
(o)

(o]
=
o°
e e T

o°

LINUX PERF

e Great potential to become the profiling tool on Linux.
e Custom trace points enable custom tools to be build.
e Proper Ul desperately needed!

INTEL® VTUNE™
AMPLIFIER

Fast, sampling based -Wal l time profiling.
Excellent visualizations, good workflow.
Proprietary, but available free of charge for non-
commercial Linux work.

Most features require Intel CPUs!

http://software.intel.com/en-us/non-commercial-software-development

INTEL® VTUNE™ AMPLIFIE

Profile Overview

Top Waiting Objects

Thh section lists the objects that spent the most time waiting in your application. Objects can w;

hronizations. A significant amount of Wait time associated with a synchronization ohject refl
p arallelism.

Sync Ohject Wait Time Wait Count

= I
wom

2
2
Ta}
—

= O
=]
[=]

BJ

wn

(4

This histogram represe

simultanesusly. Th s are consic irig ¥ ¢ runnlﬂq ona CPU or a

Thread Eir:-ncurren-: easurement of the number of fhrF‘EId'-' fhaf were not waiting. Thread
suming CPLU time,

ancurrancy

c

Target

Q 1 2 3 4 5 A+

~ dle [#] Ideal Croer
2 ? 0

Simultanecusly F'unnln-:; Threads

INTEL® VTUNE™ AMPLIFIER

Detecting CPU hotspots

M Hotspots Hotspots viewpoint (change) ®
& Analysis Target| | * Analysis Type | | 0 Summary % Caller/Callee| | #% Top-do
Grouping: Function / Call Stack

Function / Call Stack
P QList=int=:append

PQList<int=:.detach_helper
P sumList

Fcreatelist
P [Import thunk QListData:append]
P [Outside any known module]

Hint: Don't use QList by default, prefer QVector with proper Q DECLARE METATYPE hints.

http://marcmutz.wordpress.com/effective-qt/containers/

INTEL® VTUNE™ AMPLIFIER

Finding Locks and Waits

™ Locks and Waits Locks and Waits viewpoint (change) @

@ Analysis Target| | © Analysis Type| | K Summary | [ER=AGlaBN +% Caller/Callee| |#% Top-down

Grouping: Function / Call Stack

Wait Time by Utilizatiorw
|iT Idle Pcmr ik §/deal @§over

Function / Call Stack

velop::DUChainPrivate::CleanupThread::run
velop::DUChain:waitForUpdate
» KDevelop::DUChainLock::lockForwrite
» SimplePThreadMutes::tryLock
> KDevelop::UrlParseLock::UrlParselLock
velop:DUChainLock::lockForRead
> QMutex::lockinline
* KDevelop::ForegroundLock::relock
> KDevelop::SpinLock=({unsigned int) 10, (int)0=:: Spml
> SimplePThreadMutex:lock [
> KateWiewinternal::mouseMoveEvent | 0.008s

Note: Not all waits are bad - an idle QThread will wait in the eventloop e.g.

Hint: Avoid synchronous API; prefer message passing over locking

http://qt-project.org/doc/qt-4.8/signalsandslots.html

INTEL® VTUNE™ AMPLIFIER

Per-Thread CPU Usage, Context Switches, Waits

[t g (1 5 3s 55 Thread

[Unknown stack fra e 1E [Running

7 [[Unknown stack fra |2 ' "R 5 A, T : [«] 1 waits

= [[Unknown stack fra T i . e s Uk CPU Time
[Unknown stack fra - Transitions

CPU Usage
: Wk CPU Time
1] Thread Concurr...

Ll Concurrency

CPU Usage:

Thread Concurrency

Note: Fixing KDevelop requires extensive refactoring, proper APl design with threading in mind.

VALGRIND

e Callgrind: deterministic instruction profiler
e Massif: heap profiler

$ valgrind --tool={massif,callgrind} <yourapp>

Sadly large overhead, very slow

Hint: For apps using a JIT compiler (i.e. viaQtScript, QtWebKit,QML, QRegularExpression), add
the following argument to valgrind: - -smc-check=all-non-file.

KCACHEGRIND

s = : C t Calle
Incl, Self Called Function Ir e aller

I 5575

0.14

e

UnqualifiedNa me;_ﬁ.ST*'ﬁh bool} =cycle 7=
M 112.80 %

1315 359«
nod_allocator=>::allocate{unsigned

long, void const*)
TC114.28 %

~ B

sitory&lgorit...
on:;:aboutTo..

=
o b

£ ¥

7 5 1= || Callees | call Graph | All Callees Caller Map Machine Cod

callgrind.out.20573 [1] - Total Instruction Fetch Cost: 12 669 585 579

Todo: support for perf.datafiles.

MASSIF VISUALIZER

Memory consumption of kdevelop
Peak of 115,119 MIB at snapshot #81

*» 113,665 MiB: Snapshot #74
ETotal Feory Hep Gremption 113,788 MiB: Snapshaot #75
WErteArray : :GBrtedrrayichar consts, int) - 120000 113,902 MiB: Snapshot #76
KD Lop : : Froject BeseTtes : :ProjectBes. .. [| 114,207 MiB: SFIEpShEIt #IT
Do ring: : realloc it) 114,413 MiB: Snapshot #78
OkDeve lop: : Ttew Fepository +Develop: :ia. .. 114,581 MiB: SﬂEthDt #79
€ remtel O DEta: chodet - 100000 114,874 MiB: SﬂEthDt #8280

ect BaseTten : sset UPLOKLF .. 115,119 MiB: Snapshot #

O ring: : 0 ringl 0dwr corst ¥, i) = e A AR RN R # ; Y 713
OoHeshbata: a] locat =hodel it |

DoHeshata: : rebmehi int) E | O O 1WA AR R RN AR RN Bo00n
EoRring: -0 ringlimt, o :Initizlizt ...

60000

memory heap size In kilobytes

40000

20000

WOW W W W W W W W Y Y Y

1le+10

tmenl Custom Allocators | Massif Data

PMAP

Lightweight memory tracking

$ track memory.sh <yourapp>
$ show memory.sh mem. log.PID

kdevelop -s memtest

m
=
c
c
g
]
[+ R
E
3
w
c
=]
L]
.
|
Q
=
il
E

timeins

http://milianw.de/code-snippets/tracking-memory-consumption-using-pmap

MALLOCINFO

Track malloc statistics, memory fragmentation

$ run_mallocinfo <yourapp>
requires mallocinfo branch in massif-visualizer
$ massif-visualizer mem.log.PID

Memory consumption of unknown
Peak of 5,340 MiB at snapshot #29

5,340 MiB: Snapshot #43
E@Total Memory Hesp Consumption 3,340 MiB: SHEpShﬂt #£44
Bhe=p #1 o 5,340 MiB: Snapshot #45
Dideally freeable 5,340 MiB: Snapshot #46
Ofragmented 1." £ 5,34[] MiB: Snapﬁhﬂt #47

@heap #0 5 5,211 MiB: heap #0
- i 132,000 KiB: heap #1

435,688 KiB: ideally freeable

~ so00 : Snapshot #48
: Snapshot #49

: Snapshot #50

: Snapshot #51

: Snapshot #52

iB: Snapshot #53

5,340 MiB: Snapshot #54
5,340 MiB: Snapshot #55
5,340 MiB: Snapshot #56
5,340 MiB: Snapshot #57
5,340 MiB: Snapshot #58

— 5000

WOW W W W W W WY YWY

nory heap size in kilobytes

http://quickgit.kde.org/?p=scratch%2Fmwolff%2Fmallocinfo.git

THE END

QUESTIONS? FEEDBACK?
MILIAN WOLFF / HTTP://MILIANW DE

mailto:mail@milianw.de
http://milianw.de/

