
APPS ON SPEED
IMPROVING THE PERFORMANCE OF C++ APPLICATIONS

 / Milian Wolff mail@milianw.de

http://milianw.de/
mailto:mail@milianw.de

OUTLINE
Motivation
Preparations
Tooling

Linux Perf
Intel® VTune™ Amplifier
Valgrind: Callgrind & Massif
pmap
mallocinfo

MOTIVATION
Faster is (perceived) better
Run Everywhere
Do More

PREPARATIONS

LET OTHERS WORK FOR YOUR
Enable optimizations and debug symbols.

cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo
i.e. let it generate Makefiles containing:
g++ -O2 -g ...

TESTING TESTING TESTING
Prevent regressions, keep functionality - don't
overoptimize.
Don't be afraid of (extensive?) refactoring.
Write standalone benchmarks.

THE ROOT OF ALL EVIL
Don't microoptimize, know the 90/10 rule.
Beware of premature optimizations!
Yet also keep premature pessimizations in mind.

KNOWLEDGE IS KING
Knowing the ins and outs of your codebase and libraries
allows for true optimizations.
A better algorithm often yields more performance, than
optimizing a bad alternative.
Be aware: "Faster" code might be slower for smaller
datasets.

TOOLING

LINUX PERF
Fast, sampling based -Wall time profiling.
Versatile: hardware & software counters, tracepoints
Cross platform: works wherever Linux runs

LINUX PERF
Find system-wide hotspots.

Profile across process boundaries.
$ sudo perf top
Samples: 10K of event 'cycles', Event count (approx.): 2036162123
 10.67% libQtGui.so.4.8.5 [.] 0x0000000000230f07
 10.25% libc-2.17.so [.] __memcpy_ssse3_back
 2.63% libQtCore.so.4.8.5 [.] 0x00000000001a7d17
 2.42% Xorg [.] 0x000000000003ff6f
 2.05% perf [.] symbol_filter
 1.87% libc-2.17.so [.] _int_malloc
 1.72% perf [.] d_print_comp.part.8
 1.66% libc-2.17.so [.] __strcmp_sse42
 1.57% perf [.] symbols__insert
 1.38% [kernel] [k] unix_poll
 1.37% [kernel] [k] fget_light
 1.18% libc-2.17.so [.] __strstr_sse42
 1.13% libglib-2.0.so.0.3600.3 [.] 0x0000000000086e9d
 ...

LINUX PERF
Profile individual processes, see callgraphs.

$ perf record -g dwarf <yourapp>
or attach to a running app:
perf record -g dwarf -p $(pidof <yourapp>)
$ perf report
+ 7.00% kdevelop libQtCore.so.4.8.4 [.] 0x00000000000b71e5
+ 4.52% kdevelop libsqlite3.so.0.8.6 [.] 0x00000000000279f4
+ 2.45% kdevelop libkdecore.so.5.10.3 [.] 0x00000000000ad310
- 2.27% kdevelop libc-2.17.so [.] _int_malloc
- _int_malloc
 - 94.29% malloc
 - 30.10% operator new(unsigned long)
 - 8.50% KDevelop::DUContext::findDeclarations(KDevelop::Identifier...
 - 72.20% CMakeProjectVisitor::createUses(CMakeFunctionDesc const&)
 - CMakeProjectVisitor::walk(QList<CMakeFunctionDesc> const&,...
 - 70.44% CMakeProjectVisitor::visit(IfAst const*)
 IfAst::accept(CMakeAstVisitor*) const
...

LINUX PERF
Gather performance counter statistics.

$ perf stat <yourapp>
Performance counter stats for '<yourapp>':

 5606.202068 task-clock # 0.473 CPUs utilized
 604,632 context-switches # 0.108 M/sec
 146 cpu-migrations # 0.026 K/sec
 1,740 page-faults # 0.310 K/sec
5,983,888,876 cycles # 1.067 GHz [82.94%]
3,373,405,595 stalled-cycles-frontend # 56.37% frontend cycles idle [82.82%]
2,305,588,563 stalled-cycles-backend # 38.53% backend cycles idle [67.53%]
5,558,174,058 instructions # 0.93 insns per cycle
 # 0.61 stalled cycles per insn [83.62%]
1,224,492,195 branches # 218.417 M/sec [82.90%]
 22,178,629 branch-misses # 1.81% of all branches [83.81%]

11.845618581 seconds time elapsed

LINUX PERF
Great potential to become the profiling tool on Linux.
Custom trace points enable custom tools to be build.
Proper UI desperately needed!

INTEL® VTUNE™
AMPLIFIER

Fast, sampling based -Wall time profiling.
Excellent visualizations, good workflow.
Proprietary, but available for non-
commercial Linux work.
Most features require Intel CPUs!

free of charge

http://software.intel.com/en-us/non-commercial-software-development

INTEL® VTUNE™ AMPLIFIER
Profile Overview

INTEL® VTUNE™ AMPLIFIER
Detecting CPU hotspots

Hint: by default, prefer QVector with proper Q_DECLARE_METATYPE hints.Don't use QList

http://marcmutz.wordpress.com/effective-qt/containers/

INTEL® VTUNE™ AMPLIFIER
Finding Locks and Waits

Note: Not all waits are bad - an idle QThread will wait in the eventloop e.g.

Hint: Avoid synchronous API; prefer over lockingmessage passing

http://qt-project.org/doc/qt-4.8/signalsandslots.html

INTEL® VTUNE™ AMPLIFIER
Per-Thread CPU Usage, Context Switches, Waits

Note: Fixing KDevelop requires extensive refactoring, proper API design with threading in mind.

VALGRIND
Callgrind: deterministic instruction profiler
Massif: heap profiler

Sadly large overhead, very slow

Hint: For apps using a JIT compiler (i.e. via QtScript, QtWebKit, QML, QRegularExpression), add
the following argument to valgrind: --smc-check=all-non-file .

$ valgrind --tool={massif,callgrind} <yourapp>

KCACHEGRIND

Todo: support for perf.data f iles.

MASSIF VISUALIZER

PMAP
Lightweight memory tracking

$ track_memory.sh <yourapp>
$ show_memory.sh mem.log.PID

http://milianw.de/code-snippets/tracking-memory-consumption-using-pmap

MALLOCINFO
Track malloc statistics, memory fragmentation

$ run_mallocinfo <yourapp>
requires mallocinfo branch in massif-visualizer
$ massif-visualizer mem.log.PID

http://quickgit.kde.org/?p=scratch%2Fmwolff%2Fmallocinfo.git

THE END
QUESTIONS? FEEDBACK?

 / MILIAN WOLFF HTTP://MILIANW.DE

mailto:mail@milianw.de
http://milianw.de/

