Do Search-Based Approaches Improve the Design of Self-Adaptive Systems?
A Controlled Experiment

Sandro S. Andrade and Raimundo J. de A. Macêdo

Distributed Systems Laboratory (LaSiD)
Department of Computer Science
Federal University of Bahia

{sandros, macedo}@ufba.br
Agenda

- Context & motivation
- Our search-based architectural design approach
- The quasi-experiment
- Contributions of this paper
- Final remarks
Context & Motivation

- The need for self-adaptive systems (SAS):
 - Dynamic and uncertain operating environments
 - Stringent requirements for scalability, dependability, energy-efficiency, and performance
 - Incomplete/partial requirements
 - Problem/design space complexity approaching the limits of human capability
 - Rapidly varying workloads and data characteristics
 - Some problems are inherently self-adaptive or self-organizing (e.g.: robots motion coordination, particles/swarm optimization, etc)
Context & Motivation

- MAPE-K Reference Architecture [1]

Context & Motivation

• Current challenges:
 – Intricate problem space
 • How to effectively elicit the adaptation requirements?

Goals:
• Type (regulation, tracking, disturbance rejection, optimization)
• Evolution (static, dynamic)
• Duration (persistent, temporary)
• Multiplicity (single, multiple)
• Dependency (independent, complementary, conflicting)
• Flexibility (rigid, constrained, unconstrained)

Change:
• Source (internal, external)
• Anticipation (foreseen, foreseeable, unforeseen)
• Frequency (rare, frequent)
• Type (functional, non-functional, technological)
Context & Motivation

- Current challenges:
 - Intricate problem space
 - How to effectively elicit the adaptation requirements?
 - Large and complex solution space
Context & Motivation

- Current challenges:
 - Intricate problem space
 - How to effectively elicit the adaptation requirements?
 - Large and complex solution space

- Type (parametric, structural)
- Mechanism (signaling, frameworks, profiling, etc)
- Uncertainty handling (redundancy, filtering, smoothing)
Context & Motivation

- Current challenges:
 - Intricate problem space
 - How to effectively elicit the adaptation requirements?
 - Large and complex solution space

- Mechanism (symptoms databases, policies, queue networks, game theory, etc)
- System/Environment representation (ad-hoc, models)
Context & Motivation

• Current challenges:
 – Intricate problem space
 • How to effectively elicit the adaptation requirements?
 – Large and complex solution space

 • Actuation law (intelligent agents, control theory, search-based, etc)
 • Cardinality (single, utility functions, parent-front)
 • Type (static, dynamic)
Context & Motivation

• Current challenges:
 – Intricate problem space
 • How to effectively elicit the adaptation requirements?
 – Large and complex solution space

- Type (parametric, structural)
- Mechanism (function pointers, aspect weaving, metaobjects, middleware-based)
- Timeliness (best-effort, guaranteed)
Context & Motivation

• Current challenges:
 – Intricate problem space
 • How to effectively elicit the adaptation requirements?
 – Large and complex solution space
 • How to come up with an effective managing system architecture for the adaptation requirements at hand?
 • How to judiciously evaluate all available design alternatives?
 • How to make well-informed decisions about quality attributes trade-offs?
 – Consequences:
 • Lack of organized design knowledge for routine use
 • False intuition, design bias, and sub-optimal architectures
Our Search-Based Design Approach – DuSE

• Research questions

To which extent may SAS design knowledge be systematically represented for routine use?

How to support well-informed decision making regarding quality attribute trade-offs between alternative architectures for SAS?
Our Search-Based Design Approach – DuSE

- We combine the use of ...
 - Metamodeling and Domain-Specific Languages (DSL)
 - Structured Architecture Design Spaces
 - Multi-Objective Optimization

- … in order to …
 - Enable a more disciplined and automated “handbook” of SAS design
 - Provide a solid basis for choosing between architectures which exhibit different quality attributes
Our Search-Based Design Approach – DuSE

- Initial System Model
 - Annotated with corresponding UML Profile

- Domain-Specific Design Dimensions + Quality Metrics
 - Specified using the DuSE language

- Domain-Specific Design space

- Domain-Specific Supporting UML Profile

- Generic Architecture Optimization Engine

- Pareto-front of Candidate Architectures

Our Search-Based Design Approach – DuSE

- Domain independent
- Metamodel dependent
- Design space navigation engine
- Optimization engine (NSGA-II)

Our Search-Based Design Approach – DuSE

Our Search-Based Design Approach – SA:DuSE

- **SA:DuSE**
 - A particular DuSE instance which captures the most prominent design dimensions of SASs

- **Evaluation dimensions:**
 - Is SAS design indeed a multi-objective problem?
 - To which extent the quality of Pareto-optimal architectures are indeed observed in real prototypes?
 - Do search-based approaches improve the design of SAS?
The Quasi-Experiment

- Analyze the design of SAS
- For the purpose of evaluating the search-based design approach we propose and a design process based on architecture styles catalogs
- With respect to the effectiveness and complexity of resulting architectures, as well as the method's potential for leveraging the acquisition of distilled design knowledge by novice architects
- From the point of view of researchers
- In the context of graduate students endowing systems with self-adaptation capabilities
The Quasi-Experiment

- **Quasi-experiment:**
 - Blocked subject-object study with a paired comparison design

- **Subjects:**
 - 24 students of a graduate program in Distributed and Ubiquitous Computing

- **Experiment objects:**
 - Two UML models representing the managed system (web server and MapReduce distributed architecture)

- **Experiment tests:**
 - Design a managing system architecture for both objects
 - Answer a questionnaire on quality attribute trade-offs in SAS
The Quasi-Experiment

- **Independent variable:**
 - Design method
 - Search-based approach
 - Style-based approach

- **Dependent variables:**
 - Effectiveness of resulting SAS architectures
 - Complexity of resulting SAS architectures
 - The method's potential for leveraging the acquisition of distilled SAS design knowledge by novice architects

- **Experiment website:**
 - http://wiki.ifba.edu.br/tr-ce012014
The Quasi-Experiment

Experiment timetable

<table>
<thead>
<tr>
<th>Part</th>
<th>Day</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>1</td>
<td>Self-Adaptive Systems Foundations (motivation, MAPE-K reference architecture, current approaches, challenges)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Feedback Control Introduction (control goals, control properties, fixed gain SISO approaches)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Feedback Control (MIMO and adaptive approaches)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Self-Adaptive Systems - Case Studies</td>
</tr>
<tr>
<td>Exam and</td>
<td>5</td>
<td>First hour: discussion</td>
</tr>
<tr>
<td>Training</td>
<td></td>
<td>Next 3h: Pen and paper exam</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>First hour: exam discussion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Next 3h: Training (DuSE-MT and architectural styles catalog)</td>
</tr>
<tr>
<td>Experiment</td>
<td>7</td>
<td>First 110min: Tests #1 and #2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Next 110min: Tests #3 and #4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Next 20min: Tests #5 and #6 (questionnaire)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>First 110min: Tests #7 and #8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Next 110min: Tests #9 and #10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Next 20min: Tests #11 and #12 (questionnaire)</td>
</tr>
</tbody>
</table>
The Quasi-Experiment

- Experiment tests

<table>
<thead>
<tr>
<th>#Test</th>
<th>Object</th>
<th>Treatment</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Web Server</td>
<td>Style-Based Approach</td>
<td>Group 1</td>
</tr>
<tr>
<td>2</td>
<td>MapReduce Architecture</td>
<td>Search-Based Approach</td>
<td>Group 2</td>
</tr>
<tr>
<td>3</td>
<td>MapReduce Architecture</td>
<td>Style-Based Approach</td>
<td>Group 1</td>
</tr>
<tr>
<td>4</td>
<td>Web Server</td>
<td>Search-Based Approach</td>
<td>Group 2</td>
</tr>
<tr>
<td>5</td>
<td>Questionnaire</td>
<td>Style-Based Approach</td>
<td>Group 1</td>
</tr>
<tr>
<td>6</td>
<td>Questionnaire</td>
<td>Search-Based Approach</td>
<td>Group 2</td>
</tr>
<tr>
<td>7</td>
<td>MapReduce Architecture</td>
<td>Search-Based Approach</td>
<td>Group 1</td>
</tr>
<tr>
<td>8</td>
<td>Web Server</td>
<td>Style-Based Approach</td>
<td>Group 2</td>
</tr>
<tr>
<td>9</td>
<td>Web Server</td>
<td>Search-Based Approach</td>
<td>Group 1</td>
</tr>
<tr>
<td>10</td>
<td>MapReduce Architecture</td>
<td>Style-Based Approach</td>
<td>Group 2</td>
</tr>
<tr>
<td>11</td>
<td>Questionnaire</td>
<td>Search-Based Approach</td>
<td>Group 1</td>
</tr>
<tr>
<td>12</td>
<td>Questionnaire</td>
<td>Style-Based Approach</td>
<td>Group 2</td>
</tr>
</tbody>
</table>
The Quasi-Experiment

- Experiment objects
The Quasi-Experiment

- Measuring effectiveness (Generational Distance)

\[GD = \left(\frac{\sum_{i=1}^{\left| P^*_i \right|} d_{i}^{P^*}}{|Q|} \right)^{1/p} \]

where

\[d_{i}^{2} = \min_{k=1}^{M} \sum_{m=1}^{M} (f_{m}^{(i)} - f_{m}^{(k)})^2 \]

The Quasi-Experiment

- Measuring complexity (Component Point)

\[
CC_c = IFCI_c + ITCI_c = \frac{IFC_c}{n_c} + \frac{ITC_c}{m_c}
\]

\[
IFC_c = \sum_{j=1}^{2} \sum_{k=1}^{3} I_{jk} \times W_{jk}
\]

\[
ITC_c = \sum_{i=1}^{p} \sum_{j=1}^{q} \left(IF_{ij} \times \sum_{k=1}^{r} CM_{ijk} \right)
\]

\[
CM_{ijk}(D, L) = L + \sum_{n=1}^{m} CM(DT_n, L + 1)
\]

The Quasi-Experiment

- Measuring the acquisition of distilled design knowledge:
 - Questionnaire with 10 multiple choice questions
 - Questions related to quality attributes trade-offs in the SAS domain
 - Questionnaire answered at the end of each experimentation day
 - Normalized grades assigned to each student/day
The Quasi-Experiment

- Hypotheses formulation

H$_0^1$ - there is no difference in design effectiveness between a feedback control loop design created using the style-based approach (RA) and a feedback control loop design created using the search-based approach (IA)

\[H_0^1 : \mu_{GD_{RA}} = \mu_{GD_{IA}} \]
\[H_1^1 : \mu_{GD_{RA}} > \mu_{GD_{IA}} \]

H$_0^2$ - there is no difference in design complexity between a feedback control loop design created using the RA and a feedback control loop design created using the IA

\[H_0^2 : \mu_{AC_{RA}} = \mu_{AC_{IA}} \]
\[H_1^2 : \mu_{AC_{RA}} > \mu_{AC_{IA}} \]

H$_0^3$ - there is no difference in the acquisition of distilled design knowledge between a feedback control loop design created using the RA and a feedback control loop design created using the IA

\[H_0^3 : \mu_{QG_{RA}} = \mu_{QG_{IA}} \]
\[H_1^3 : \mu_{QG_{RA}} < \mu_{QG_{IA}} \]
The Quasi-Experiment

- Descriptive statistics

<table>
<thead>
<tr>
<th></th>
<th>Generational Distance (GD)</th>
<th>Architecture Complexity (AC)</th>
<th>Questionnaire Grade (QG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean(μ)</td>
<td>median</td>
<td>std. dev.</td>
<td></td>
</tr>
<tr>
<td>Search-Based Approach (IA)</td>
<td>2.40</td>
<td>2.45</td>
<td>1.08</td>
</tr>
<tr>
<td>Style-Based Approach (RA)</td>
<td>2.59</td>
<td>2.41</td>
<td>1.03</td>
</tr>
<tr>
<td>Difference (IA–RA)</td>
<td>-0.19</td>
<td>-0.62</td>
<td>1.32</td>
</tr>
</tbody>
</table>

	mean(μ)	**median**	**std. dev.**
Search-Based Approach (IA)	6.46	6.65	2.77
Style-Based Approach (RA)	7.02	7.05	2.70
Difference (IA–RA)	-0.57	-1.90	3.47

	mean(μ)	**median**	**std. dev.**
Search-Based Approach (IA)	6.85	7.00	1.43
Style-Based Approach (RA)	7.04	7.25	1.27
Difference (IA–RA)	-0.19	-0.50	1.51
The Quasi-Experiment

- Assumptions of parametric tests:
 - Data is taken from an interval or ratio scale
 - Observations are independent
 - Population variances are equal between groups (homoscedasticity)
 - Measured values are normally distributed

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Anderson-Darling p-value</th>
<th>Brown–Forsythe p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generational Distance</td>
<td>1.29814505086953E-007</td>
<td>0.9009324909</td>
</tr>
<tr>
<td>Architecture Complexity</td>
<td>2.88672812219819E-010</td>
<td>0.7207666486</td>
</tr>
<tr>
<td>Questionnaire Grade</td>
<td>0.635529605</td>
<td>0.7167840476</td>
</tr>
</tbody>
</table>

α=0.05
The Quasi-Experiment

- Assumptions of parametric tests:
 - Data is taken from an interval or ratio scale
 - Observations are independent
 - Population variances are equal between groups (homoscedasticity)
 - Measured values are normally distributed

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Anderson-Darling p-value</th>
<th>Brown–Forsythe p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generational Distance</td>
<td>1.29814505086953E-007</td>
<td>0.9009324909</td>
</tr>
<tr>
<td>Architecture Complexity</td>
<td>2.88672812219819E-010</td>
<td>0.7207666486</td>
</tr>
<tr>
<td>Questionnaire Grade</td>
<td>0.635529605</td>
<td>0.7167840476</td>
</tr>
</tbody>
</table>

\(\alpha = 0.05 \)

Cannot reject homoscedasticity
The Quasi-Experiment

- Assumptions of parametric tests:
 - Data is taken from an interval or ratio scale
 - Observations are independent
 - Population variances are equal between groups (homoscedasticity)
 - Measured values are normally distributed

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Anderson-Darling p-value</th>
<th>Brown–Forsythe p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generational Distance</td>
<td>1.29814505086953E-007</td>
<td>0.9009324909</td>
</tr>
<tr>
<td>Architecture Complexity</td>
<td>2.88672812219819E-010</td>
<td>0.7207666486</td>
</tr>
<tr>
<td>Questionnaire Grade</td>
<td>0.635529605</td>
<td>0.7167840476</td>
</tr>
</tbody>
</table>

\(\alpha = 0.05 \)
The Quasi-Experiment

- Assumptions of parametric tests:
 - Data is taken from an interval or ratio scale
 - Observations are independent
 - Population variances are equal between groups (homoscedasticity)
 - Measured values are normally distributed

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Anderson-Darling p-value</th>
<th>Brown–Forsythe p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generational Distance</td>
<td>1.29814505086953E-007</td>
<td>0.9009324909</td>
</tr>
<tr>
<td>Architecture Complexity</td>
<td>2.88672812219819E-010</td>
<td>0.7207666486</td>
</tr>
<tr>
<td>Questionnaire Grade</td>
<td>0.635529605</td>
<td>0.7167840476</td>
</tr>
</tbody>
</table>

$\alpha=0.05$
The Quasi-Experiment

- Results of the statistical tests

<table>
<thead>
<tr>
<th>H_0^i</th>
<th>Test</th>
<th>Criteria</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wilcoxon Signed-Rank</td>
<td>$T(410) > T_{critical}(378)$</td>
<td>Rejected</td>
</tr>
<tr>
<td>2</td>
<td>Wilcoxon Signed-Rank</td>
<td>$T(367) > T_{critical}(361)$</td>
<td>Rejected</td>
</tr>
<tr>
<td>3</td>
<td>Paired t-test</td>
<td>p-value=0.5488018266</td>
<td>Not Rejected</td>
</tr>
</tbody>
</table>

$\alpha=0.05$
The Quasi-Experiment

- Threats to validity
 - Construct:
 - Inadequate preoperational explication of constructs
 - Hypothesis guessing
 - Objects representativeness
 - Internal:
 - Maturation
 - Instrumentation
 - External:
 - Students acting as subjects
 - Conclusion:
 - Experiment holders creating the experiment objects
Contributions of this paper

- To the best of our knowledge, SA:DuSE is the first effort in applying search-based approaches in the SAS domain.
- To the best of our knowledge, this is the second controlled experiment in the SAS domain (the first one is [8]).
- We got some empirical evidence about the benefit of search-based approaches when designing SASs.
- The potential for leveraging knowledge acquisition still deserves further investigation.

Final Remarks

- A lot of research towards principled and systematic design of self-adaptive systems
- Effectiveness of systematic design spaces in capturing intricate solution spaces
 - However, qualitative approaches may be used to address another facets of architectural design
- Future work:
 - SA:DuSE expansion (NSGA-III)
 - More investigation on real prototypes
 - From design spaces to design theories
Thanks ! Questions ?

Sandro S. Andrade and Raimundo J. de A. Macêdo

{sandros, macedo}@ufba.br