Welcome to Wayland

IED B> Er <

[
v

A

e
Agenda
Architecture
Evolution of KWin
The kwind Project

What's next?

« O)» <EHHEE=R

«E>»

Welcome to Wayland — Martin GraBlin

Architecture

Welcome to Wayland — Martin GraBlin

Architecture as presented last year

g Plasma
» Desktop Shell
KWin
Compositor & X11 WM @ @
Wayland Server
P

é ndering}npul \

input (A XWayland

Weston

%}ut\r&: ndering

1_3 Kernel

Welcome to Wayland — Martin GraBlin

Current architecture

Wayland Wayland
Client Client

KWin
Compositor & X11 WM
Wayland Server

input [rendering

x’\ Kernel |

Plasma
Desktop Shell

?(rootless XServer

XClient
(Remote)

Welcome to Wayland — Martin GraBlin

.
Backend plugins for different platforms

KWin internal Platform Abstraction
m Create OpenGL context and surface
m QPainter fallback for no OpenGL
m Output information

m Input event handling

Libinput

If backend doesn’t provide input, libinput library is used.

40> <5 R Welcome to Wayland — Martin GraBlin

.
Available backend plugins
Windowed /Nested Platforms
m X11 (supports OpenGL, QPainter)
m Wayland (supports OpenGL, QPainter)
Full Platforms

m DRM (supports OpenGL through GBM, QPainter)
m fbdev (supports QPainter)

« O)» <EHHEE=R

«E>»

= Android hwcomposer/libhybris (supports OpenGL, input)

This Presentation runs on the DRM platform!

Welcome to Wayland — Martin GraBlin

o
Architecture summary

KWin is a Wayland server

KWin supports wl_shell clients both OpenGL and SHM
KWin supports Xwayland based clients

KWin can render on top of DRM/KMS

KWin support input through libinput

Nested KWin Wayland servers on X11/Wayland for easy testing

40> <5 R Welcome to Wayland — Martin GraBlin

Evolution of KWin

Welcome to Wayland — Martin GraBlin

Simplified KWin (Core) architecture before Wayland

Warksrme

acdostract>>

Tarlewl

« O)» <JEHHEE=R

«E>»

Welcome to Wayland — Martin GraBlin

1 Simplified KWin (Core) architecture as of today

WpatRedirectioncarsor

<<dbostract>>
Edge
WindovoBasedEdqe

<cdostracts> [
Larsor

Backend
specitic
Screens

Welcome to Wayland — Martin GraBlin

{Ld How to start KWin

= (QApplication
(xcb QPA)

needs event loop

requires running X server

requires Wayland server

Welcome to Wayland — Martin GraBlin

o
Starting KWin as X11 application

How to start X?
m KWin's startup is highly X11 dependent
m Qt's XCB plugin requires X11 in QApplication ctor

m Starting Xwayland before KWin requires a running Wayland server

m Wayland server requires event loop
m Event loop requires QApplication

m Xwayland requires wl_drm

KWin needs to move away from xcb QPA

40> <5 R Welcome to Wayland — Martin GraBlin

.
Is QtWayland any better?

New Startup
m First start Wayland server
Create QApplication

Startup Compositor/Scene

Startup Xwayland
Wait for Xwayland being started
Continue with X specific startup code

40> <5 R Welcome to Wayland — Martin GraBlin

Similar problems as xcb QPA

Roundtrips are evil

m Requires Wayland server at QApplication startup

m Does roundtrip to server in startup (blocks gui thread)

m Cannot create a QThread before creating QApplication

m QtWayland dispatches events while waiting for the roundtrip

«O>» «F>» «E» « >

Welcome to Wayland — Martin GraBlin

{8 Still many workarounds needed

Blocking OpenGL context creation

// HACK: create a @QWindow in a thread to force QtWayland to create the
// client buffer integration.
// this performs an eglInitialize which would block as %t does a Toundtrip
// to the Wayland server in the main thread.
// By moving into a thread we get the initialize without hitting the problem
// This needs to be done before creating the Workspace as from instde
// Workspace the dangerous code gets hit in the main thread
QFutureWatcher<void> *eglInitWatcher = new QFutureWatcher<void>(this);
eglInitWatcher->setFuture (QtConcurrent: :run([] {

QWindow w;

w.setSurfaceType (QSurface: :RasterGLSurface) ;

w.create();

s

Welcome to Wayland — Martin GraBlin

{8 More workarounds

BypassWindowManagerHint needed for each Window on X11

bool ApplicationWayland::notify(QObject *o, QEvent *e)
{
if (QWindow *w = gobject_cast< QWindow* >(o0)) {
if (e->type() == QEvent::Show) {

// on QtWayland windows with X11BypassWindowManagerHint are not shown,
// thus we need to remove it. As the flag is interpreted only before
// the PlatformWindow %s created we need to destroy the window first
if (w->flags() & Qt::X11BypassWindowManagerHint) {

w->setFlags (w->flags() & ~Qt::X11BypassWindowManagerHint) ;
w->destroy () ;

w->show() ;

return false;

Welcome to Wayland — Martin GraBlin

o
Do we need our own QPA plugin?

Further issues
m Cannot share composited OpenGL context with QtQuick
Cannot use threaded QtQuick render loop
QtQuick on hwcomposer aborts

Intercept all input inside KWin anyway

Have code to create OpenGL context

|
|
|
m Have code to create X11 and Wayland windows
|
]

Have code to do low level event processing

Welcome to Wayland — Martin GraBlin

Agenda

The kwind Project

Welcome to Wayland — Martin GraBlin

features

| propose to rename kwin to kwind because it swallows all

(Kai-Uwe Broulik)

« O)» <EHHEE=R

«E>»

Welcome to Wayland — Martin GraBlin

e
Fixing the X11 security issues

Generic issues on X11
m KGlobalAccel is a global key logger

Screen lockers are not secure (see Blog post “Why screen lockers on X11 cannot
be secure”)

All windows can edit all attributes of windows of foreign processes
Windows can place themselves

Windows can bypass Window Managers

Clients can warp pointer

Clients can grab foreign window content

40> <5 R Welcome to Wayland — Martin GraBlin

http://blog.martin-graesslin.com/blog/2015/01/why-screen-lockers-on-x11-cannot-be-secure/
http://blog.martin-graesslin.com/blog/2015/01/why-screen-lockers-on-x11-cannot-be-secure/

.
KWin needs more knowledge about the windows

More control to the compositor
m KGlobalAccel moved into KWin

m Screen Locking needs to move into KWin

m Needs to know which windows belong to virtual keyboard
Needs to know which process is desktop shell
Needs to know which process is screen shot application
Needs to know which process handles power management
Needs to know the session splash screen

Needs to authorize processes to access special interfaces

Welcome to Wayland — Martin GraBlin

Suggestions for the problems appreciated!

It's tricky
m Don't duplicate code
Don't hard depend on specific technology
Everything should be flexible

How to handle e.g. a shell process crash

Don't harm user experience (no UAC)
What about kded?

40> <5 R Welcome to Wayland — Martin GraBlin

What's next?

Welcome to Wayland — Martin GraBlin

b CE_—__ S ——
XDG_Shell

So far only wl_shell support
m wl_shell is rather limited
m We make it useable with a Qt extension
m No support for Weston-demo clients
m No support for GTK+ clients

XDG_Shell under heavy development
m Unstable protocol mechanism

m GTK, Qt, Weston on real systems out of sync

m Need to get our (Qt, Plasma) needs into the protocol

Welcome to Wayland — Martin GraBlin

e U
Window Decorations

Issues with Qt deco
m Minimize button does nothing

m No visible distinction between active/inactive state

m Cannot configure button order
m Cannot add our own buttons
m It's not a good client-side deco solution, models server side

Possible Solution 1 Maybe better Solution?
Implement a better plugin m Disable Qt deco at runtime
based on KDecoration m Read Qt::FramelessWindowHint in Extended surface

m Create server deco for all Qt Windows

Welcome to Wayland — Martin GraBlin

.
Improvements in KWin

Lot’s of features still missing
m Geometry handling missing
m Window types mostly missing
m Interaction with Plasma needs improvements
m Lots of small bugs here and there

m Window Rules missing

Please help us!

Plasma on Wayland on todo.kde.org

Welcome to Wayland — Martin GraBlin

https://todo.kde.org/?controller=board&action=readonly&token=0ef6e11806f1410bf0a3ba50e2bbb22ccfaf2c0f2b52b1c1726f25c2ce3d

KWindowSystem

Modeled around X11
m Everywhere global Window Id
m Mixes API for own and foreign windows
m Platform abstraction is not a solution to support Wayland

Idea
Create a new API exposing a QAbstractltemModel which can be used by Task

Managers.

Welcome to Wayland — Martin GraBlin

«E>»

« O)» <EHHEE=R

.
Polish, polish, polish

Please Help!
m Starting KWin: kwin_wayland —xwayland

m Starting Plasma: startplasmacompositor

4 0 > G EEGEEREEN Welcome to Wayland — Martin GraBlin

.
Tuesday is Wayland Day
Lab 0.5w
m 10:30 Wayland and Powerdevil and KScreen
m 11:30 Wayland and Plasma
m 15:00 Wayland and Applications

«E>»

« O)» <JEHHEE=R

Welcome to Wayland — Martin GraBlin

b CE_—__ S ——
What is KWayland Client?

Qt style convenient library for Wayland
m Allow to use Wayland APIs in a Qt way

m Not a complete wrapper of Wayland yet
m Can integrate with QtWayland QPA
m Additional KWin/Plasma specific Wayland interfaces

Doesn't that duplicate QtWayland?
m QtWayland is a QPA plugin
m KWayland is an API which could be used to write a Wayland QPA plugin
m KWayland is to QtWayland, what KWindowSystem is to xcb QPA plugin

40> <5 R Welcome to Wayland — Martin GraBlin

b CE_—__ S ——
Additional Interfaces provided by KWayland
Already implemented
m org_kde_kwin_shadow (e.g. Plasma panel shadow)
m org_kde_kwin_idle (KF5IdleTime)
m org_kde_kwin_fake_input (kdeconnect)
m org_kde_plasma_shell

m org_kde_plasma_window_management
More to come, e.g.

m Highlight Windows

m Blur and Background contrast effect
m Present Windows

m Slide Windows
« O)» <EHHEE=R

«E>»

Welcome to Wayland — Martin GraBlin

New Repository: kwayland-integration

New in Plasma 5.4
m Plugin for KWindowSystem

m Plugin for KldleTime
m Place for any framework plugin which needs to depend on KWayland

Welcome to Wayland — Martin GraBlin

«E>»

« O)» <JEHHEE=R

What is KWayland Server?

The other side
Qt-style API to implement a Wayland server
Wrapper for the core Wayland protocols

Wrapper for the KWin/Plasma specific interfaces
No rendering!

Implements lots of generic Wayland server functionality

«O>» «F>» «E» «E>»

Welcome to Wayland — Martin GraBlin

.
Building a Wayland Server with KWayland

auto display = new KWayland::Server::Display(this);
display->start();

auto compositor = display->createCompositor (display);
compositor->create() ;

auto shell = display->createShell(display);

shell->create();

display->createShm() ;

auto seat = display->createSeat(display);

seat->create();

display->createDataDeviceManager (display)->create() ;
display->createldle(display)->create();

auto plasmaShell = display->createPlasmaShell(display);
plasmaShell->create();

auto gtExtendedSurface = display->createQtSurfaceExtension(display);
qtExtendedSurface->create();

auto windowManagement = display->createPlasmaWindowManagement (display) ;
windowManagement->create() ;

auto shadowManager = display->createShadowManager (display);
shadowManager->create() ;

Welcome to Wayland — Martin GraBlin

{8 Interacting with the server

Example for a created object

connect (m_plasmaShell, &PlasmaShelllInterface::surfaceCreated,
[this] (PlasmaShellSurfaceInterface *surface) {
if (ShellClient *client = findClient(surface->surface())) {
client->installPlasmaShellSurface (surface);

}

Welcome to Wayland — Martin GraBlin

{Ld Interacting with the server

Example for updating information in the server

void InputRedirection::processPointerMotion(const QPointF &pos, uint32_t time)

{

// KWin internal handling for pointer motion removed for readability
#1f HAVE_WAYLAND
if (auto seat = findSeat()) {
seat->setTimestamp(time) ;
seat->setPointerPos(pos);

Welcome to Wayland — Martin GraBlin

Why not QtCompositor?

Comparable to Client vs QPA
m Our own interfaces are no fit for integration into Qt

m QtCompositor has not seen a release yet

m Focus on QtQuick useless for our needs

m Lot's of things which just doesn't fit our usecases

Welcome to Wayland — Martin GraBlin

	Architecture
	Evolution of KWin
	The kwind Project
	What's next?

