
QUARTERMASTER
OPEN SOURCE COMPLIANCE TOOLING

KDE AKADEMY, AUGUST 2018
@fosscompliance (Quartermaster)
@mirkoboehm (me)

What is Quartermaster?

• Quartermaster is an integrated FOSS
toolchain that implements industry best
practises of license compliance
management.

• Quartermaster runs adjacent to a software
build in CI or development environments. It
collects build graphs, performs analysis
and generates compliance reports (to
developers, reviewers, upstream).

• Quartermaster focuses on fact finding and
accurate, complete and up-to-date
compliance documentation.

• Quartermaster is FOSS and developed
under a collaborative model.

There is still no industry standard for FOSS compliance tooling.
The management of software copyright and license compliance in
FOSS needs to improve.

Consensus

–Two-factor theory (Wikipedia)

“Hygiene factors … do not give positive satisfaction or lead to
higher motivation, though dissatisfaction results from their

absence.”

FOSS Compliance is a hygiene factor.
Uncertainty and litigation undermines the
fabric of Open Source.

For whom?

• FOSS Communities: Deliver compliance
documentation with your packages.

• Software vendors: Certify own compliance
checks along the supply chain (see
OpenChain spec).

• Distribution channels: Verify compliance
documentation for products in your store/
on your distribution/…

Who makes it?

• Quartermaster is an Open Source project
by licensing and governance.

• Endocode is currently driving it.

• Siemens, Google support it.

• Quartermaster should become an
independent project under a neutral
umbrella (LF?)

Workflow (Phases and Tasks)

Construction

Analysis

Reporting

Contributors

MetadataConfiguration

Copyright Licenses

Policies Metrics

BOM CI Feedback Alerts

License Catalog

Build Graph

History

Knowledge

Workflow Phases Functions
C

om
m

an
d

 L
in

e/
C

I/…

Knowledge

Workflow (Sample Modules)

Construction

Analysis

Reporting

ScanCode

Config filecmake

Cregit (Commercial)

Custom policy
check

(Code
complexity?)

HTML SPDX Slack

Github Badge

make

Git

ClearlyDefined

Workflow Phases Functions
C

om
m

an
d

 L
in

e/
C

I/…

ClearlyDefined

Step by step…

(Demo Time…)

Architecture

• Master process

• Toolchain specific build system
instrumentation (gcc, clang, go build, …)

• gRPC/protobuf module APIs

• No file formats

• Modular command line toolchain

• Integration API in master

• Linux/OSX/(Windows) client side, master
runs in container

License Model

• Data Model: Open Data License

• Core Toolchain: GPL3

• Modules: separate processes,
communicating with the master

• Paradigm: Toolchain is FOSS. Core QMSTR
modules are FOSS. Proprietary integrations
possible, all relevant data becomes part of
Open Data model.

Take-aways: Lessons learned from the Quartermaster prototype

Facts vs Opinions

• Compliance Documentation:

• Authors, copyright, license information is
project metadata and belongs into the
“package” (repository and commit
history).

• Approval, Guidance, Supply Chain:

• Approvals, reviews, judgement calls are
business-specific and belong into a
knowledge base.

Inbound vs Outbound
Licenses

• Source package SPDX files document
inbound licenses.

• Outbound license cannot be deduced.

• If outbound license is specified by vendor,
license compatibility can be
algorithmically evaluated.

Upstream vs Data Pools

• FOSS compliance data belongs upstream.

• Default: The inbound licenses of a
module are deduced from the content of
the repository.

• Opinions (reviews, approvals, …) are not
generic.

• In-house “Open Source Handbook”.

• Relevant metadata not available upstream
should be curated and centralised.

• ClearlyDefined.

Build time is the right time.

Build Time vs Static Code Analysis

• A Concrete Build Dependency Graph associates referenced source files
and dependencies to a (binary) target.

• Source code analysis (code scanning) detects attributes of source files
(licenses, authors, copyright holders).

• The combination of build time and static code analysis allows reasoning
about outbound licenses.

Quality Issues with Unmanaged
Code Repositories

• Environments that assemble programs
clients-side from unknown sources defeat
quality assurance mechanisms.

• FOSS Compliance documentation is
possible, but unreliable and costly until this
quality problem is resolved.

Improving FOSS Compliance is a process.

We need to improve all aspects over
time: Supply chain management, up to

date and accurate documentation, reliable
knowledge bases, …

Community and Business

Open Governance

• Public Website: qmstr.org

• Public sprint and milestone planning (see
blog).

• Regular development updates

• Collaborative requirements development

• Show me the code: github.com/QMSTR

• Open Slack channel: qmstr.slack.com

• Follow @fosscompliance :-)

• Legal Advisory Committee (collaboration
with REUSE? FSFE Legal Network?)

http://qmstr.org
http://qmstr.slack.com

QMSTR is
commercially supported FOSS

• Separation of product and services.

• Endocode will begin offering professional
services with the release of QMSTR v0.1.

• Support Contracts

• Training

• Custom Development

• Consulting

• No Open Core: 100% FOSS.

Summary

QMSTR creates an integrated Open Source toolchain that
implements industry best practises of license compliance
management.

Mission

Project Roadmap

• Q2/2017: Proof of Concept. (✅ check)

• Q4/2017: Minimum viable prototype. (✅ check)

• Jan 17, 2018: QMSTR 0.1 requirements workshop (✅ check)

• April 2018 (LLW 2018): QMSTR v0.1 release. (✅ check)

• July 2018: QMSTR v0.2 release. (✅ check)

• New features: Git analyser, SPDX parser, Python QMSTR modules, …

• Ongoing: A major release every three months.

What could the KDE Community do?

• Contribute to language and KDE-style toolkits and workflow support.

• Adopt Quartermaster for releases, packaging, checks, …

• …?

passed

QMSTR

Next opportunities to get involved!

• Next sprint community hangout: August 22

• Q4 milestone planning workshop October 2018 (possibly co-located with
Open Source Summit Europe)

• We need: coding. feedback. knowledge. adoption. funding.

passed

QMSTR

QUESTIONS?

QUARTERMASTER
OPEN SOURCE COMPLIANCE TOOLING

KDE AKADEMY, AUGUST 2018

@fosscompliance (Quartermaster)
@mirkoboehm (me)

Credits
• Katie Sayer, “Why”, https://www.flickr.com/photos/ksayer/5614813544, CC BY-SA 2.0
• Kristian Fagerström, “Earth”, https://www.flickr.com/photos/147764143@N07/32995070824. CC BY-SA 2.0
• Greg Nehring, “HOW?”, https://www.flickr.com/photos/sabertasche2/2609405516, CC BY-SA 2.0
• Wikipedia Commons: https://en.wikipedia.org/wiki/File:Berner_Iustitia.jpg
• Joe Loong, “IMG_0573”, https://www.flickr.com/photos/joelogon/3193671630, CC BY-SA 2.0
• Clay Gilliland, “Inbound”, https://www.flickr.com/photos/26781577@N07/12104785406, CC BY-SA 2.0
• Darwin Bell, “red lock”, https://www.flickr.com/photos/darwinbell/275662601, CC BY 2.0
• Alex Ermolin, “We're Open”, https://www.flickr.com/photos/alexermolin/4974314835, CC BY 2.0
• kelp, “Wiring Before”, https://www.flickr.com/photos/kelp/4894023263, CC BY 2.0

https://www.flickr.com/photos/ksayer/5614813544
https://www.flickr.com/photos/147764143@N07/32995070824
https://www.flickr.com/photos/sabertasche2/2609405516
https://en.wikipedia.org/wiki/File:Berner_Iustitia.jpg
https://www.flickr.com/photos/joelogon/3193671630
https://www.flickr.com/photos/26781577@N07/12104785406
https://www.flickr.com/photos/darwinbell/275662601
https://www.flickr.com/photos/alexermolin/4974314835
https://www.flickr.com/photos/kelp/4894023263

