
Short Dive into Building
Automotive ECUs with Yocto
First Steps into Yocto

Andreas Cord-Landwehr

August 12th, 2018
Akademy 2018, Vienna



About Me
IRC-nick: CoLa
KDE developer since 2010; mostly KDE-Edu
did PhD in algorithmic game theory
now working as software developer at
CLAAS E-Systems and creating terminals for big agriculture machines

could be called “enterprise embedded” development
key areas: Qt, C++, embedded Linux, Yocto
several Yocto-based ARM devices are at my desk

The Next 23 Minutes:
1 Introduction into Yocto
2 Using Yocto to build images and SDKs
3 How to create KDE-power devices with Yocto

Introduction
About Me & the Talk

2 Automotive ECUs with Yocto / Andreas Cord-Landwehr



source: https://www.e-consystems.com

custom hardware: purpose-tailored hardware, e.g. ARM CPU, CAN interface,
100BaseT1 Ethernet, NAND memory, GPIOs for different purposes

hardware evolves: hardware and software are often developed at the same time and
only a limited number of prototype devices is available

custom flashing process: devices must be flashed by developers, updated by technicians
on field and provisioned at end of the manufacturing line

cross-building: hardware architecture different to x86 development machine
operating system: in this talk we only look at Linux (note: no hard real-time)

Part 1: Yocto Basics
Embedded Devices in Scope of this Talk

3 Automotive ECUs with Yocto / Andreas Cord-Landwehr



Issue Statement
For a given target device, we want to generate a system image:

image is a root file-system that is ready to be flashed to persistent memory
image contains applications and libraries that work on target device’s architecture
image generation is reproduceable and well-definend (= no magic happens)
image shall be created on an x86 developer machine

In the remainder of this talk, I will outline how Yocto attempts to solve this task.

Part 1: Yocto Basics
The Basic Issue: Creating a System Image

4 Automotive ECUs with Yocto / Andreas Cord-Landwehr



The Yocto Project is an open source collaboration project that provides templates,
tools and methods to help you create custom Linux-based systems for embedded and
IOT products, regardless of the hardware architecture.

https://www.yoctoproject.org/about/

This means that Yocto. . .
1 strives for being an ecosystem that makes device creation simple
2 aims to provide all tools needed for doing this job
3 ensures reusability and vendor independence by defining general rules

Basic Notions:
Recipe: build and packaging instructions for compiling a source code package
Layer: set of recipes and/or modifications of other recipes
Image: complete root file system that is flashed onto a device
SDK: set of cross-compiled libraries, header files and all cross-compilation

tools needed to cross-compile code for a target device

Part 1: Yocto Basics
About the Yocto Project

5 Automotive ECUs with Yocto / Andreas Cord-Landwehr



The Yocto Project is an open source collaboration project that provides templates,
tools and methods to help you create custom Linux-based systems for embedded and
IOT products, regardless of the hardware architecture.

https://www.yoctoproject.org/about/

This means that Yocto. . .
1 strives for being an ecosystem that makes device creation simple
2 aims to provide all tools needed for doing this job
3 ensures reusability and vendor independence by defining general rules

Basic Notions:
Recipe: build and packaging instructions for compiling a source code package
Layer: set of recipes and/or modifications of other recipes
Image: complete root file system that is flashed onto a device
SDK: set of cross-compiled libraries, header files and all cross-compilation

tools needed to cross-compile code for a target device

Part 1: Yocto Basics
About the Yocto Project

5 Automotive ECUs with Yocto / Andreas Cord-Landwehr



Yocto & OpenEmbedded

OpenEmbedded is a build automation framework and cross-compile environment
OpenEmbedded community was formally established in 2003; Yocto in 2010
Yocto uses and co-maintains OpenEmbedded tools (BitBake, OE-Core)

OpenEmbedded-Core = metadata & build instructions
defines how basic tasks are performed (reused in recipes)

1 download source code
2 configure source code
3 setup build dependencies
4 compile source code with the respective build system (CMake, QMake, Make. . . )
5 populate cross-building sysroot and create packages
6 perform QA checks

provides a big initial set of recipes for core libraries and applications
supported platforms: ARM, MIPS, PowerPC, x86, QEMU
repository: http://git.openembedded.org/openembedded-core/

Part 1: Yocto Basics
Building Block 1: OpenEmbedded-Core

6 Automotive ECUs with Yocto / Andreas Cord-Landwehr

http://git.openembedded.org/openembedded-core/


Yocto & OpenEmbedded

OpenEmbedded is a build automation framework and cross-compile environment
OpenEmbedded community was formally established in 2003; Yocto in 2010
Yocto uses and co-maintains OpenEmbedded tools (BitBake, OE-Core)

OpenEmbedded-Core = metadata & build instructions
defines how basic tasks are performed (reused in recipes)

1 download source code
2 configure source code
3 setup build dependencies
4 compile source code with the respective build system (CMake, QMake, Make. . . )
5 populate cross-building sysroot and create packages
6 perform QA checks

provides a big initial set of recipes for core libraries and applications
supported platforms: ARM, MIPS, PowerPC, x86, QEMU
repository: http://git.openembedded.org/openembedded-core/

Part 1: Yocto Basics
Building Block 1: OpenEmbedded-Core

6 Automotive ECUs with Yocto / Andreas Cord-Landwehr

http://git.openembedded.org/openembedded-core/


BitBake = build system
BitBake recipes specify how a particular package is built
(by using basic OE-Core tasks)
overall BitBake execution:

1 parses all available layers and their recipes
2 prepares build tools and cross-build tools by configuring their environments
3 schedules all basic tasks of all to be built packages by their defined dependencies

(e.g. first download, then configure, then build; e.g. first build qtbase then karchive)
4 performs the specified basic tasks

BitBake configuration consists of two parts:
1 environment configuration that is sourced by a script
2 a folder conf/ in the build directory that contains list of all layers (bblayers.conf)

and build machine specific general configuration (local.conf)

repository: http://git.openembedded.org/bitbake/

Part 1: Yocto Basics
Building Block 2: BitBake

7 Automotive ECUs with Yocto / Andreas Cord-Landwehr

http://git.openembedded.org/bitbake/


Poky = reference & quick-start distro
reference distribution of the Yocto Project
contains BitBake: build system, task scheduler and executor
contains metadata (global definitions, build logic, packaging, etc.):

1 OpenEmbedded-Core (OE-Core)
2 Yocto Project-specific metadata (meta-yocto)
3 Yocto Project-specific board support package (meta-yocto-bsp)

Repository: https://git.yoctoproject.org/cgit/cgit.cgi/poky/

Poky contains everything to start a new project or to be used as a blueprint.

Part 1: Yocto Basics
Building Block 3: Poky

8 Automotive ECUs with Yocto / Andreas Cord-Landwehr

https://git.yoctoproject.org/cgit/cgit.cgi/poky/


The Need for SDKs

building Yocto is complex and extremly time & space consuming
split responsibilities in a team: development vs. integration
in industry, you might not want to disclose your source codes or build
configuration to contractors

Yocto’s Standard SDK
allows compiling for target device without building the Yocto system first
can be generated alongside with image (and ALWAYS must be ABI compatible
with image)
is a self-extracing (gigantic) shell script
contains all needed cross-building tools and cross-built libraries
can be integrated with your IDE (e.g. KDevelop, QtCreator)
simply generate with: bitbake -c do_populate_sdk

Part 1: Yocto Basics
SDKs for your Yocto Image

9 Automotive ECUs with Yocto / Andreas Cord-Landwehr



always needed: OE-Core, BitBake
distribution: Poky or some custom distribution
board support package (e.g. meta-ti, meta-fsl-arm)
custom layers with your own recipes (e.g. meta-kf5)

Part 2: Using Yocto
Contents of a Typical Yocto System

10 Automotive ECUs with Yocto / Andreas Cord-Landwehr



Additional layers can bring additional libraries/applications to the Yocto world:

meta-kf5
provides build recipes for latest release of KF5
provides all non-standard dependency recipes
can easily be integrated into any (recent) Yocto project
Repository: https://cgit.kde.org/yocto-meta-kf5.git/
→ thanks to Johan Thelin & Volker Krause

meta-kde
all recipes for building a full Plasma Desktop
Repository: https://cgit.kde.org/yocto-meta-kde.git/
→ again, thanks to Volker!

Part 2: Using Yocto
KF5-powered Devices with Yocto: meta-kf5 & meta-kde

11 Automotive ECUs with Yocto / Andreas Cord-Landwehr

https://cgit.kde.org/yocto-meta-kf5.git/
https://cgit.kde.org/yocto-meta-kde.git/


This talk has (by far) not enough time to do that, but I would start as follows:

1 start with the Yocto quick start guide, setup your system and try with QEMU:
https://www.yoctoproject.org/docs/2.5/brief-yoctoprojectqs/
brief-yoctoprojectqs.html

2 get a real development device (e.g. Raspberry, BeagleBone, i.MX6) and run your
test system there
→ you will need a BSP layer for that. . .

3 integrate meta-qt5 and run a simple full-screen QML test application (or a
console application, if you do not have a display)

4 integrate meta-kf5 and (if you want) meta-kde

Part 2: Using Yocto
And now?!
How to start with Yocto and KF5?

12 Automotive ECUs with Yocto / Andreas Cord-Landwehr

https://www.yoctoproject.org/docs/2.5/brief-yoctoprojectqs/brief-yoctoprojectqs.html
https://www.yoctoproject.org/docs/2.5/brief-yoctoprojectqs/brief-yoctoprojectqs.html


Yocto Project Documentation
https://www.yoctoproject.org/docs/

BitBake User Manual
https://www.yoctoproject.org/docs/2.5/bitbake-user-manual/
bitbake-user-manual.html

Yocto Reference Manual
https://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html

OpenEmbedded Wiki
http://www.openembedded.org/wiki/Main_Page

Qt for Embedded
http://doc.qt.io/qt-5/embedded-linux.html

Part 2: Using Yocto
Further Reading & References

13 Automotive ECUs with Yocto / Andreas Cord-Landwehr

https://www.yoctoproject.org/docs/
https://www.yoctoproject.org/docs/2.5/bitbake-user-manual/bitbake-user-manual.html
https://www.yoctoproject.org/docs/2.5/bitbake-user-manual/bitbake-user-manual.html
https://www.yoctoproject.org/docs/2.5/ref-manual/ref-manual.html
http://www.openembedded.org/wiki/Main_Page
http://doc.qt.io/qt-5/embedded-linux.html


Thank you for your attention!

Andreas Cord-Landwehr
E-mail: cordlandwehr@kde.org

mailto:cordlandwehr@kde.org

	Part 1: Yocto Basics
	Part 2: Using Yocto
	Appendix

