
DEV TREK THE NEXT GENERATION
Igor Ljubuncic | Developer Advocate | Canonical | Stardate 99068.39

IN SPACE, NO ONE CAN HEAR YOU SNAP ...

Igor Ljubuncic

● Developer Advocate

● Linux

● Books

● Petrolhead

What are we going to do?

● Talk about snaps, talk about you and me

● Snap, huh, yeah, what is it good for?

● Architecture, syntax

● Publishing to the Snap Store

● ????

● Profit!

“What be snaps?”
-- Niccolo Machiavelli

What be snaps?

● Snaps are self-contained software packages

● Work on all major Linux distributions (40+) without modification

● Simple to create and publish (with reason)

● Safe automatic updates

Traditional methods of software delivery

● Knowledge of Linux internals

● Complex packaging code

● Not transactional

● Unbounded

● Risky

-- Zoolander

“But why snaps?”

@ Copyright Zoolander 2 by Panorama Films, Red Hour Films and
Scott Rudin Prod; used for illustration purposes only

Out of the box discovery by millions

● All Ubuntu versions since 14.04

● 40+ Linux distributions

● All software welcome,

regardless of license or cost

Click & Install

● One snap to rule them all ...

● Consistent behaviour

● Fewer moving parts

Analytics

● See the growth across geos & measure impact of each release

Full control of update lifecycle

● Updates published instantly

● Cryptographically signed

● Risk-based channels

● OS frozen or EOL? Not a problem!

● Updates, 4 times/day

Snap a day (or rather four times a day) keeps the doctor away!

“How does it work?”
-- Friedrich Nietzsche

Snap major components

● Snapd - background service to install and run snaps

● Snap - userspace component of the snapd service, e,g:

snap install foo

● Snap Store - central, online repository of snap applications

● Snapcraft - command line tool to build and publish snaps

The world of snaps

Snap Store

Snapd

Snap

snapcraft

Snapcraft capabilities

● Command-line tool to build and publish snaps

● Snaps as final artifact

● Snap = single compressed SquashFS filesystem

● Application code + declarative metadata

● Format extension .snap

Where does it all start?

● Build configuration in snapcraft.yaml

● YAML syntax

● Similar to RPM spec file ...

Snapcraft.yaml (just an example)

name: wethr
version: "1.4.0"
summary: Command line weather tool.
description:

Get current weather.
base: core18
apps:
 wethr:

command: wethr
plugs:

 - network
parts:
 wethr:

plugin: nodejs
source-tag: "v1.4.0"
source: https://github.com/twobucks/wethr.git

Metadata

Mandatory fields: name, version, summary, description

name: wethr
version: "1.4.0"
summary: Command line weather tool.
description:

Get current weather.

Metadata

Definition Type Length Note

Name Name String 1-40 Unique

Version App version String 1-32 No semantic meaning

Summary Brief String 1-79

Description Full String High

Confinement level

● Isolation & security

● Snaps cannot change other snaps

● Snaps cannot change system

● Different confinement levels

● Interfaces

Confinement level

Wethr example - confinement: strict

Strict Devmode Classic

Access to network N Y System

Access to home dir N Y System

Access to audio N Y System

Access to webcam N Y System

Access to display N Y System

Used for Preferred Troubleshooting Stopgap measure

Other Interfaces override Requires review

Application isolation

core snap

app snap

app-specific
writable area

app snap

app-specific
writable area

Enforced confinement
Signed and
authenticated

Read-only file

Regularly updated OTA

https://docs.snapcraft.io/core/snapd

Base

● In general, snaps cannot see the root FS on end user systems

● Applications need some location to act as the root FS

● Base - special kind of snap /w minimal set of libraries

● Mounted as root FS for applications

● The core18/20 base is recommended

base: core18

Build definition

apps:
 wethr:

command: wethr
plugs:

 - network

parts:
 wethr:

plugin: nodejs
source-tag: "v1.4.0"
source: https://github.com/twobucks/wethr.git

Build definition - apps

apps:
 wethr:

command: wethr
plugs:

 - network

● apps: defines the application(s) in the snap

● wethr: defines a block for the wethr application

● command: defines the path to executable

● plugs: access resources not available under strict confinement

Build definition - parts

parts:
 wethr:

plugin: nodejs
source-tag: "v1.4.0"
source: https://github.com/twobucks/wethr.git

● parts: sources needed to assemble the app

● plugin: language specific tools

● source-tag: tag for source repositories under version control

● source: URL or path to download for the build

Snapcraft commands

build Builds artifacts based on the snapcraft.yaml.

clean Remove content - cleans downloads, builds or...

init Initializes a snapcraft project.

push Pushes a snap to the online snap store.

register Registers a snap with the online snap store.

snap Create a snaps.

And more ...

Application build process

● Clean environment

● No library dependencies or conflicts

snapcraft

Snap created

● There could be errors - later in the series

● Successful build - <name>.snap

Snap file format

● Unpack snap or mount as loopback device:

unsquashfs <file>.snap

mount <file>.snap <mount point> -t squashfs -o loop

drwxr-xr-x 2 igor igor 4096 Dec 5 12:48 bin/
-rwxr-xr-x 1 igor igor 61 Dec 5 12:48 command-tqdm.wrapper*
drwxr-xr-x 3 igor igor 4096 Dec 5 12:48 etc/
drwxr-xr-x 4 igor igor 4096 Dec 5 12:48 lib/
drwxr-xr-x 3 igor igor 4096 Dec 5 12:48 meta/
drwxr-xr-x 3 igor igor 4096 Dec 5 12:48 snap/
drwxr-xr-x 6 igor igor 4096 Apr 16 2018 usr/

Snap file format

● Concept similar to LD_LIBRARY_PATH

● $SNAP* environment variables

● $SNAP (install path, RO)

● $SNAP_DATA (path in /var, RW)

● $SNAP_USER_DATA (path in /home, RW)

● And others

Publishing a snap

● Create your dev account

● Register your app’s name

● Release your app

Publishing a snap

snapcraft login

snapcraft push --release=<channel> <file>.snap

Store channels

<track>/<risk>/<branch>

● Track - trade-off between stability and new features

● Risk - multiple supported releases of the same application

● Branch - optional for temporary releases and bug-fixing

--channel=latest/edge

Tracks

● Default = latest

● Minor updates, e.g 2.0.1, 2.0.2

● Major updates, e.g. 2.1, 2.2

● Long-Term Support, e.g. 3.2, 4.1

Risk

● Most important aspect of channels

● Levels: stable, candidate, beta, and edge

--stable, --channel=stable, --channel=latest/stable

● Users can switch between channels

Upload to the store

● Do not use stable right away

● Staged deployment

snapcraft push --release=beta <file>.snap

● Automated checks + manual review

● Compelling page

“Questions?”
-- Audience (you)

Thank you!
igor.ljubuncic@canonical.com

