QtQuick3D 6.2 mtroductlon

Christian Stremme

2021

4

Topics

»3D offerings in Qt o
»Introduction to QtQU|ck3D
»Mixing 2D and 3D in QtQuick3D
» New features in QtQuick3D €
»What’s next? |

3D Offerings in Qt

» Qt3D, Qt 3D Studio and QtQuick3D
» Qt3D
» High-level abstraction with low-level APIs.
» Extremely flexible.
» Flexibility and abstraction comes at a cost.
» Qt 3D Studio
» A complete suite of formats and concepts foreign to Qt.
» Heavily tied to OpenGL.
» Closer integration with Qt proven difficult.
» QtQuick3D
» High-level APIs with high-level concepts.
» Good integration with QtQuick.
» Replaces Qt 3D Studio.

3 16 June 2021 © The Qt Company

3D Offerings in Qt - Which one should | choose?

» If you must ask, the right choice is most likely QtQuick3D.
» Qt3D offers a completely different abstraction that will make sense for those looking for it.

4 16 June 2021 © The Qt Company

Introduction to QtQuick3D

» Primary goals:
» Simple and easy to use.
» High level concepts with sane default values.
» No prior knowledge about 3D or 3D APIs needed.
» Excellent documentation.
» Light weight.
» Embedded focused.
» Understanding, reasoning and debugging the engine should be “easy.”
» Integrate well with QtQuick.
» Mixing 2D and 3D should be easy.
» “Unified rendering.”
» Good looking text.

» Tooling.

5 16 June 2021 © The Qt Company

Avchitectural overview
» Sits on top of QtRhi

» Interacts with the QtQuick Renderer
Qt Quick 3D Renderer - Qt Quick Batch Renderer

Direct3D 11 Vulkan OpenGL (ES)

[]
Linux (X11, Wayland, Embedded)

sSup

y

Assets and Asset
conditioning

» Balsam
» Shadergen
» RuntimelLoader (6.2)

4

import QtQuick.Window
import QtQuick3D

IVI i n i mal Scene import QtQuick3D.Helpers

Window {

h: 640
: 480
ble: true
gsTr("Hello QtQuick3D")

View3D { // View into the 3D scene
view3d
(L: parent

PerspectiveCamera { // Camera
camera
sition: Qt.vector3d(@, 0, 400)
}

Directionallight { // Light
light
}

Model { // Model
- "#Cube”
tation: Quaternion.fromEulerAngles(25, 45, 0)
rials: PrincipledMaterial {
‘ "green”

CoNOYWU A WN B

import QtQuick.Window
import QtQuick3D
import QtQuick3D.AssetUtils

Window {
width: 640
height: 480
visible: true
title: gsTr("Hello QtQuick3D")

View3D { // View into the 3D scene
id: view3d
anchors.fill: parent
environment: SceneEnvironment {
lightProbe: Texture {
source: "field.hdr"

}

backgroundMode: SceneEnvironment.SkyBox

}

PerspectiveCamera { // Camera
id: |camera
position: Qt.vector3d(@, 0, 200)

}

Directionallight { // Light
id: light
}

RuntimelLoader {
scale: Qt.vector3d(80, 80, 80)
rotation: Quaternion.fromEulerAngles(15, 35, @)
source: "helmet.glb”

Mixing 2D and 3D

»y Both 2D and 3D items defined in the same scene
»Inline rendering for both 2D and 3D
»Scenes can still be rendered into a texture

Direct path

» Items are rendered without the need and cost of
rendering into a texture.

» Transforms are applied to the 2D items resulting
in @ more pleasing result.

» However, there are some caveats.
» Different scene coordinates (y-axis)

» Can be solved by wrapping itemsin a
node.

» Anchoring.

11 8 June 2021 © The Qt Company

import
import
import
import

Window

QtQuick.Window
QtQuick3D
QtQuick3D.AssetUtlls
QtQuick.Controls

{
h: 640
: 480
: true
gsTr("Hello QtQuick3D"™)

View3D { // View into the 3D scene

: view3d
! Ll: parent

PerspectiveCamera { // Camera
: camera
n: Qt.vector3d(Q, 0, 400)
}

Directionallight { // Light
id: (light]
}

Node {
1 n: Quaternion.fromEulerAngles(25, 45, ©)
Button {
: "Push”
: 100
Lght: 60
: =120 // Y is up, in the 3D scene.
: cubeMaterial.baseColor = "red"

}

Model { // Model
‘ ;. "#Cube”
: PrincipledMaterial {
: cubeMaterial

‘green”

Texture path

» QtQuick items are rendered into texture
» Flexible

» Again, there are some caveats

import QtQuick.Window
import QtQuick3D

import QtQuick3D.AssetUtils
import QtQuick.Controls

Window {
width: 640
eight: 480
: true

title: gsTr("Hello QtQu

View3D { // View into t
id: view3d

ick3D")

he 3D scene

fill: parent

PerspectiveCamera
. camera
sition: Qt.ve

{ // Camera

ctor3d(@, 0, 400)

// Light

rnion.fromEulerAngles(25, 45, 9)

ectangle”
t.vector3d(0, 120, @)
ector3d(l, 9.6, 9)
rue

: PrincipledMaterial {
olorMap: Texture {

n: Button {
text: "Push"
dth: 100
height: 60

onClicked: cubeMaterial.baseColor = "

1
ube”

: PrincipledMaterial {

eMaterial

olor: "green"

Directionallight {
id: light
}
Model {
rotation: Quate
Model {
source: "#R
position: Q
scale: Qt.v
f ble: t
na
}
}
}
}
Model { // Mode
S e: "#C
natc LC
d: cub
}
}
}

red"

Pusp

Push

11111111111111111111

4

New featuresin 6.2

7

Instancing
Particles

7

Run-time asset lo

7

Parallax occlusion ma

~

New features in 6.2

Instancing
Particles
Run-time asset loading

Parallax occlusion mapping

=

o
29 .

=t
=

eh

New features in 6.2

Instancing
Particles
Run-time asset loading

Parallax occlusion mapping

Push. | j S
| D ~E-V | mBUsh
1 Push
Push ‘% Push
i Push

New features in 6.2

~

Instancing

Particles

~

~

Run-time asset loading

~

Parallax occlusion mapping

New features in 6.2

~

Instancing

Particles

~

~

Run-time asset loading

~

Parallax occlusion mapping

What’s next?

»Tooling

» Design Studio
» Asset conditioning pipeline

» Getting more feedback

christian.stromme (at) gt.io

