

PLASMA 6 IS COMING
What to Expect, UX and under the Hood

Marco Martin Niccolò Venerandi

DE
SI

G
N

 A
N

D
IM

PL
EM

EN
TA

TI
O

N

We also want Plasma 6 to be the most

conservative major version change ever.

~VDG chat, months ago

We're not actually trying to sell Plasma 6 as a

shiny new product.

~VDG chat, still months ago

Ahahah, just kidding, Plasma 6 is actually

completely packed with redesigns already

~Me, whilst drafting this presentation

PLASMA
STUFF

COMPLETELY
REDESIGNED
OVERVIEW

FUN STUFF

COMPLETELY
REDESIGNED
GRID VIEW

FUN STUFF

1:1 TOUCH
PAD/SCREEN
GESTURES

FUN STUFF

COMPLETELY
REDESIGNED
PANEL
SETTINGS

FUN STUFF

REVAMPED
(FLOATING)
PANELS

FUN STUFF

REVAMPED
APPLETS
LOOK

FUN STUFF

REDESIGNED TASK SWITCHER
FUN STUFF

FLOATING
DIALOGS

FUN STUFF

OTHER
STUFF

REDESIGNED
PLACES ICON
THEME

FUN STUFF

REDESIGNED
MOUSE ICON
THEME

FUN STUFF

REDESIGNED
SOUND
THEME

FUN STUFF

COLORFUL
WINDOW
HEADERS

FUN STUFF

TECHNICAL
DETAILS

KWIN

● HDR support: games and videos that support HDR will
be displayed so on monitors that support it

● Compositor restart: if the wayland compositor crashes
and restarts, the applications survive

● New workspace/activities support: ext-workspace
protocol which allows to tie virtual desktops to
activities

DATAENGINES

● Was a good api for the old KDE4 imperative javascript
plasmoids

● In QML plasmoids is better to use qml types which
export the required properties

● Dataengine infra moved to a Plasma5Support lib just
as a porting aid, in prevision to be removed
completely

KSVG

● Plasma::Svg and Plasma::FrameSvg were very
useful

● Applications that wanted to use them had
dependency problems

● All got split in a new framework: KSvg

KSVG

import org.kde.plasma 2.0 as PlasmaCore

PlasmaCore.FrameSvgItem {

 imagePath: “widgets/background”

}

PlasmaCore.SvgItem {

 svg: PlasmaCore.Svg {

 ImagePath: “widgets/action”

 }

}

import org.kde.ksvg 1.0 as KSvg

KSvg.FrameSvgItem {

 imagePath: “widgets/background”

}

KSvg.SvgItem {

 imagePath: “widgets/action”

}

KSVG

● In plasmoids is used as it was, no big api changes
● In normal applications with the class

Ksvg::ImageSet is possible to define where the
“themes” for the app are

● For generic apps there is no constraint on the
filesystem structure for the “theme”

QML PLASMOID API

● “plasmoid” context property is going away
● “Plasmoid” attached property is the

Plasma::Applet instance directly
● Everyhitng “graphical” is PlasmoidItem
● It must be the root element of the plasmoid qml

WRITE A NEW PLASMOID

Item {

 Plasmoid.fullRepresentation: Item {…}

 Plasmoid.title: i18n(“foo”)

}

PlasmoidItem {

 fullRepresentation: Item {…}

 Plasmoid.title: i18n(“foo”)

}

ACTIONS

● Plasmoids can have custom context menu actions
● API used to be very imperative, it was done for the

KDE4 Javascript plasmoids (when QML didn’t exist
yet)

● In Plasma6 has been replaced with a way nicer
declarative ui, as follows:

ACTIONS

 Component.onCompleted: {
 Plasmoid.clearActions()

 Plasmoid.setAction("previous", i18nc("Play previous track", "Previous Track"),
 Qt.application.layoutDirection === Qt.RightToLeft ? "media-skip-forward" : "media-skip-backward");
 Plasmoid.action("previous").enabled = Qt.binding(() => root.canGoPrevious)
 Plasmoid.action("previous").visible = Qt.binding(() => root.canControl)
 Plasmoid.action("previous").priority = Plasmoid.LowPriorityAction
 }
 function action_previous() {
 serviceOp(mpris2Source.current, "Previous");
 }

 Plasmoid.contextualActions: [
 PlasmaCore.Action {
 text: i18nc("Play previous track", "Previous Track")
 icon.name: Qt.application.layoutDirection === Qt.RightToLeft ? "media-skip-forward" : "media-skip-backward"
 priority: Plasmoid.LowPriorityAction
 visible: root.canControl
 enabled: root.canGoPrevious
 onTriggered: serviceOp(mpris2Source.current, "Previous")
 }
]

KIRIGAMIFICATION

● When Kirigami was designed, we used
concepts we learned from Plasma, and refined
them

● Plasma::Theme is an api for colors, and
Kirigami::Theme derived from it

● The Kirigami version is much more advanced

COLORS

● Kirigami::Theme is an attached property that “inherits”
● There are color “sets” (window, itemviews, header

areas etc)
● Theme.textColor will be from the correct “set”
● If an item is set a set, child items will inherit the set
● Colors can be overwritten

COLORS

● Plasma had a similar thing by combining
Plasma::Theme and Plasma::ColorScope

● In Plasma6 we did away with this duplication, and
Kirigami::Theme is used in plasmoids instead of
plasma classes

● Was not possible in plasma5 as the kirigami version
only gave system, not plasma colors

UNITS AND ICONS

● Like theme, we had a duplication in the singleton class
Units

● Used for grid units, default layout spacing, animation
duration etc

● In Plasma6 only the Kirigami version stays
● Same thing for a component to draw icons away from

PlasmaCore.IconItem to Kirigami.Icon

 QUESTIONS?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

