

Documentation
Goals and Techniques

FOR KDE AND OPEN SOURCE

Thiago Masato Costa Sueto

D
o
cu

m
e
n
ta

ti
o
n
 f

o
r

H
u
m

a
n
s

About Me

➔ Studied Brazilian Portuguese and German

Language and Literature

➔ Translator by profession

➔ Technical Writer for KDE

➔ Furry, but that doesn’t matter

➔ Jack of all trades:

➔ User Support on r/kde → Wikis → Promo →

r/kde mod → Websites → Bug Triage →

Development → Documentation

Me

What is a Technical Writer?

➔ Also called a Documentarian

➔ Also called a Technical Communicator

➔ “Technical Writers, first and foremost, are

testers and researchers. [Their] job is to

know what people want to achieve and

precisely how to achieve it. Communicating

that knowledge is the last step of the process

and it shouldn’t take 10% of [their] time.” [1]

Technical Writers

What a Technical Writer does

➔ Improves existing documentation

➔ Translates technical knowledge for its users

➔ Formats content to be accessible

➔ Creates new content (text, images, UIs)

➔ Makes it easy for readers to fulfill their tasks

Technical Writers

What steps to take

➔ Plan

➔ Structure

➔ Write

➔ Review

➔ Publish

Technical Writers

The ultimate goal of a
Technical Writer

➔ Allow the user to complete their tasks in a

seamless, accessible way

Technical Writers

When does a Technical Writer
fail?
➔ When the user cannot understand the

documentation

➔ When the user gives up on reading the

documentation

➔ When the user cannot scan the

documentation for what they seek

➔ When the documentation lies

➔ When the documentation is broken

➔ When the user cannot achieve a task

Technical Writers

The four types of
documentation used in KDE

➔ Wikis

➔ Tutorials

➔ Application Manuals

➔ API Documentation

Documentation

Wikis

➔ Volatile

➔ Easy access

➔ Easy onboarding

➔ No review process

➔ Few guidelines

➔ MediaWiki formatting

Documentation

Tutorials

➔ Relatively static

➔ Requires gitlab/invent account

➔ Easy onboarding

➔ Has a review process

➔ Some guidelines

➔ Markdown formatting

Documentation

Application Manuals

➔ Quite static

➔ Requires gitlab/invent account or email

➔ Difficult onboarding

➔ Can have a review process

➔ Some guidelines

➔ Docbook XML formatting

Documentation

API Documentation

➔ Quite static

➔ Requires gitlab/invent account

➔ Difficult onboarding

➔ Has a review process

➔ Several guidelines

➔ Doxygen formatting

Documentation

The most important things

➔ Audience

➔ Navigation

➔ Accessibility

➔ Formatting

➔ Language

➔ Information Disclosure

➔ Levels of Edit

➔ Documentation is part of your

product/software

Documentation

Audience

➔ Different from Persona

➔ User, Admin, Developer?

➔ Level of experience?

➔ Minimum expectations?

➔ Product use cases?

➔ The tasks they want to accomplish?

➔ The audience is everything

➔ Always think like your audience

Documentation

Navigation

➔ “One-stop information lookup and

retrieval”[2]

➔ Headings, sections, titles, pages

➔ Links, links everywhere

➔ Cross-references

➔ Keywords

➔ The audience only needs to leave the

website for third party information

Documentation

Accessibility

➔ Is it readable? (language and viewing)

➔ Is it linkable? (linking to relevant parts)

➔ Is it exposed? (flat vs deep hierarchy)

➔ Does the audience know it exists?

Documentation

Formatting

➔ Abbreviations

➔ Use of bold/italics

➔ Capitalization

➔ Parallel Constructions/Lists

➔ Highlights

➔ Monospaced text

Documentation

Language

➔ Style Guides

➔ Formal Grammar

➔ Audience-based Language

➔ Contextual Language

➔ Consistency

➔ Typos/Spelling

➔ Clarity

➔ Accuracy

Documentation

Information Disclosure

➔ Is it a single story or multiple stories?

➔ How many new elements are introduced

per paragraph/section?

➔ Will the audience understand it only

with what you wrote?

➔ Is the text too dense for your audience?

➔ Have you introduced your audience to

unfamiliar terms?

Documentation

Levels of Edit

➔ “Categorical scheme for editing text”

➔ Better than what I summarized here!

➔ 1976 stuff

➔ Think of it as: the possible ways you

can contribute to documentation

➔ Do only one or a few at a time!

➔ Don’t overwhelm yourself!

Documentation

Accurate Descriptions >
Buzzwords

➔ Lesson from KDE Promo

➔ Don’t buzzword or attempt to convince,

use merit and actual benefits

➔ You audience wants clarity and

accuracy to accomplish a goal

Additional Concepts

Knowing it exists > How to
use it

➔ Your audience is not dumb

➔ If they know about a thing, they can

search for it (think: keywords)

➔ If they know how to use it, but not what

it is or why to use it, it is useless

Additional Concepts

Never document the future

➔ Golden rule

➔ Never make promises, document only

what is currently there*

➔ Documentation is not the place for

announcing new features

Additional Concepts

The Curse of Knowledge

➔ “As experts, it is easy to forget that

novices don’t know what you already

know.”[3]

Additional Concepts

No overlap or duplication*

➔ If possible, link to existing explanations

➔ If not possible, make short summaries

➔ Create content such that it can be

linked later by someone else

➔ *Duplication is fine if it helps to clarify

Additional Concepts

Topics Vs Procedures

Procedures

➔ Step-by-step instructions: How?

➔ Action focused

Topics

➔ Answers to specific questions: Who?

What? When? Where? Why?

➔ Explain-y is fine

Additional Concepts

How to address problems

➔ There are global problems and local

problems

➔ Prioritize and fix global problems

➔ If a problem occurs frequently, propose

a guideline

➔ Global problems are addressed once

➔ Local problems are addressed

individually

Teamwork

The review process

➔ No red ink! (lesson learned)

➔ Guidelines, style guides are not strict

rules

➔ You should be guided by reality and

practicality

➔ Clarify which changes are optional

Teamwork

Future contributors

➔ Document your lessons learned

➔ Prioritize onboarding

➔ You are not the owner of the docs

➔ Technical debt is also a thing in docs:

future-proof

Teamwork

No time to explain :(

➔ Agile

➔ Managerial aspects

➔ Reader feedback

➔ Measuring quality

➔ Additional tech

➔ Formatting itself

Extras

Resources to learn more

➔ Modern Technical Writing: super short

read, super introductory, worth how

inexpensive it is (4 bucks)

➔ (Dys)functional Documentation:

explains levels of edit, focus on

standardization/guidelines, highly

detailed on technical writing techniques

and recommendations/best practices,

must read

Extras

Resources to learn more

➔ The Product is Docs: mentions Agile,

extremely comprehensive and the go-to

recommendation, a tad too corporate

focused

➔ Technical Writing Process: focuses on

the managerial aspect of technical

writing and contact with other team

members, large corporate focus

Extras

Resources to learn more

➔ Docs For Developers: high level details

of all aspects of technical writing, focus

on API docs

➔ Write The Docs: a global community

with many resources to learn about

documentation, including an extensive

guide and book recommendations

➔ Daniel Beck’s blog: a blog I found to

approach interesting docs topics

Extras

Resources to learn more

➔ The Elements of Style (4th edition): a

foundational book on good writing

➔ Chicago Manual of Style (17th edition):

the de-facto style guide on formal

English grammar, expensive but

definitely worth it even if you import it

Extras

Thanks for
your time!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

