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About Me

➔ Studied Brazilian Portuguese and German 

Language and Literature

➔ Translator by profession

➔ Technical Writer for KDE

➔ Furry, but that doesn’t matter

➔ Jack of all trades:

➔ User Support on r/kde → Wikis → Promo → 

r/kde mod → Websites → Bug Triage → 

Development → Documentation
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What is a Technical Writer?

➔ Also called a Documentarian

➔ Also called a Technical Communicator

➔ “Technical Writers, first and foremost, are 

testers and researchers. [Their] job is to 

know what people want to achieve and 

precisely how to achieve it. Communicating 

that knowledge is the last step of the process 

and it shouldn’t take 10% of [their] time.” [1]
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What a Technical Writer does

➔ Improves existing documentation

➔ Translates technical knowledge for its users

➔ Formats content to be accessible

➔ Creates new content (text, images, UIs)

➔ Makes it easy for readers to fulfill their tasks
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What steps to take

➔ Plan

➔ Structure

➔ Write

➔ Review

➔ Publish
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The ultimate goal of a 
Technical Writer

➔ Allow the user to complete their tasks in a 

seamless, accessible way
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When does a Technical Writer 
fail?
➔ When the user cannot understand the 

documentation

➔ When the user gives up on reading the 

documentation

➔ When the user cannot scan the 

documentation for what they seek

➔ When the documentation lies

➔ When the documentation is broken

➔ When the user cannot achieve a task
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The four types of 
documentation used in KDE

➔ Wikis

➔ Tutorials

➔ Application Manuals

➔ API Documentation
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Wikis

➔ Volatile

➔ Easy access

➔ Easy onboarding

➔ No review process

➔ Few guidelines

➔ MediaWiki formatting
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Tutorials

➔ Relatively static

➔ Requires gitlab/invent account

➔ Easy onboarding

➔ Has a review process

➔ Some guidelines

➔ Markdown formatting
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Application Manuals

➔ Quite static

➔ Requires gitlab/invent account or email

➔ Difficult onboarding

➔ Can have a review process

➔ Some guidelines

➔ Docbook XML formatting
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API Documentation

➔ Quite static

➔ Requires gitlab/invent account

➔ Difficult onboarding

➔ Has a review process

➔ Several guidelines

➔ Doxygen formatting
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The most important things

➔ Audience

➔ Navigation

➔ Accessibility

➔ Formatting

➔ Language

➔ Information Disclosure

➔ Levels of Edit

➔ Documentation is part of your 

product/software
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Audience

➔ Different from Persona

➔ User, Admin, Developer?

➔ Level of experience?

➔ Minimum expectations?

➔ Product use cases?

➔ The tasks they want to accomplish?

➔ The audience is everything

➔ Always think like your audience

Documentation



  

Navigation

➔ “One-stop information lookup and 

retrieval”[2]

➔ Headings, sections, titles, pages

➔ Links, links everywhere

➔ Cross-references

➔ Keywords

➔ The audience only needs to leave the 

website for third party information
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Accessibility

➔ Is it readable? (language and viewing)

➔ Is it linkable? (linking to relevant parts)

➔ Is it exposed? (flat vs deep hierarchy)

➔ Does the audience know it exists?
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Formatting

➔ Abbreviations

➔ Use of bold/italics

➔ Capitalization

➔ Parallel Constructions/Lists

➔ Highlights

➔ Monospaced text
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Language

➔ Style Guides

➔ Formal Grammar

➔ Audience-based Language

➔ Contextual Language

➔ Consistency

➔ Typos/Spelling

➔ Clarity

➔ Accuracy
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Information Disclosure

➔ Is it a single story or multiple stories?

➔ How many new elements are introduced 

per paragraph/section?

➔ Will the audience understand it only 

with what you wrote?

➔ Is the text too dense for your audience?

➔ Have you introduced your audience to 

unfamiliar terms?
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Levels of Edit

➔ “Categorical scheme for editing text”

➔ Better than what I summarized here!

➔ 1976 stuff

➔ Think of it as: the possible ways you 

can contribute to documentation

➔ Do only one or a few at a time!

➔ Don’t overwhelm yourself!
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Accurate Descriptions > 
Buzzwords

➔ Lesson from KDE Promo

➔ Don’t buzzword or attempt to convince, 

use merit and actual benefits

➔ You audience wants clarity and 

accuracy to accomplish a goal

Additional Concepts



  

Knowing it exists > How to 
use it

➔ Your audience is not dumb

➔ If they know about a thing, they can 

search for it (think: keywords)

➔ If they know how to use it, but not what 

it is or why to use it, it is useless
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Never document the future

➔ Golden rule

➔ Never make promises, document only 

what is currently there*

➔ Documentation is not the place for 

announcing new features
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The Curse of Knowledge

➔ “As experts, it is easy to forget that 

novices don’t know what you already 

know.”[3]
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No overlap or duplication*

➔ If possible, link to existing explanations

➔ If not possible, make short summaries

➔ Create content such that it can be 

linked later by someone else

➔ *Duplication is fine if it helps to clarify
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Topics Vs Procedures

Procedures

➔ Step-by-step instructions: How?

➔ Action focused

Topics

➔ Answers to specific questions: Who? 

What? When? Where? Why?

➔ Explain-y is fine
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How to address problems

➔ There are global problems and local 

problems

➔ Prioritize and fix global problems

➔ If a problem occurs frequently, propose 

a guideline

➔ Global problems are addressed once

➔ Local problems are addressed 

individually
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The review process

➔ No red ink! (lesson learned)

➔ Guidelines, style guides are not strict 

rules

➔ You should be guided by reality and 

practicality

➔ Clarify which changes are optional
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Future contributors

➔ Document your lessons learned

➔ Prioritize onboarding

➔ You are not the owner of the docs

➔ Technical debt is also a thing in docs: 

future-proof
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No time to explain :(

➔ Agile

➔ Managerial aspects

➔ Reader feedback

➔ Measuring quality

➔ Additional tech

➔ Formatting itself

Extras



  

Resources to learn more

➔ Modern Technical Writing: super short 

read, super introductory, worth how 

inexpensive it is (4 bucks)

➔ (Dys)functional Documentation: 

explains levels of edit, focus on 

standardization/guidelines, highly 

detailed on technical writing techniques 

and recommendations/best practices, 

must read
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Resources to learn more

➔ The Product is Docs: mentions Agile, 

extremely comprehensive and the go-to 

recommendation, a tad too corporate 

focused

➔ Technical Writing Process: focuses on 

the managerial aspect of technical 

writing and contact with other team 

members, large corporate focus
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Resources to learn more

➔ Docs For Developers: high level details 

of all aspects of technical writing, focus 

on API docs

➔ Write The Docs: a global community 

with many resources to learn about 

documentation, including an extensive 

guide and book recommendations

➔ Daniel Beck’s blog: a blog I found to 

approach interesting docs topics
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Resources to learn more

➔ The Elements of Style (4th edition): a 

foundational book on good writing

➔ Chicago Manual of Style (17th edition): 

the de-facto style guide on formal 

English grammar, expensive but 

definitely worth it even if you import it
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Thanks for 
your time!
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