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C++, Rust AND Qt?
Really?



  

Overview
● Non-technical bits:

– What is Rust?

– Rust in KDE
● What we have and what we could have

● For technical wizards:

– Possible benefits of Rust (for a C++ programmer)

– Integration strategies for Qt, Rust and C++
● Existing applications to take inspiration from



  

No Previous Qt + Rust Talk?

● I quickly skimmed past programs:
– Tobias Hunger talking about Rust + Slint UI (2023)
– Méven talking about Rust in KDE (2020)
– Emma showcasing Rust support in KDevelop (2017)

● We have plenty of stuff to talk about!



  

Who Am I?

● Joshua Goins

● Software Engineer at KDAB

● Been hacking away at KDE for a couple of 
years now

● Have been using Rust for lots of personal 
projects, I want to use Qt in them!



  

Rust Basics



  

What Is Rust?

● Systems language, like C++

● Officially released in 2015, but still a relatively new language

● Focuses on “safety” and lots of interesting compiler-based 
checks

● Similar syntax to C++ and C, in some surface level aspects



  

Rust Features
● “Batteries included”

– Testing suite

– Package system for developers

– Build system

– Benchmarking (soon!)

– Standard libraries

– Toolchains for obscure targets



  

Rust “Promises”

● Rust tries to be more safe than C++

● Checks for:
– Memory safety
– Thread safety
– Ownership

● We’ll go over an example later in the technical section



  

Rust in KDE



  

Why Are We Even Here?

● KDE has always been written in C++, why should we care?

● What can Rust bring to the table?

● Why Rust and not X, Y or [insert your favorite language]?
– I can do what I want!
– Rust has lots of tools for C/C++ integration



  

What Rust Can Bring to the Table
● New contributors?

– Less and less people are interested in C++
– They say its “legacy” and “Rust is more interesting”
– And also that C++ is a waste of time :-(
– Regardless if that’s true, Rust contributors are a huge untapped 

market
– If we want a healthy flow of new contributors, we have to start 

thinking about this stuff!



  

What Rust Can Bring to the Table

Source: StackOverflow Developer Survey, 2024

One of the most 
desired languages!

C++ is still loved!

https://survey.stackoverflow.co/2024/


  

What Rust Can Bring to the Table
● Thinking outside the box

– Rust is in dire need of GUI applications

– As KDE, we want people to use Qt. By extension, they can be pulled into 
KDE to use our frameworks!

– Making it easier to write Qt-enabled Rust benefits KDE and the greater 
Rust ecosystem

– Using CXX, we can also write bindings for our frameworks
● More on this later!



  

What Rust Can Bring to the Table

● Memory safe code
– Like in Akonadi, tasks like “HTML parsing” is pretty 

separated from the UI layer
– There are *real* crashes we are solving via Rust
– What are some other areas we could apply Rust to?



  

What Rust Can Bring to the Table

● Useful libraries exist in Rust!
– Libraries that lack a C API, can be hoisted into existing 

KDE applications with a little bit of Rust glue.
– Corrosion makes this extremely easy and we’re already 

shipping it in some cases
● More about this later in the technical section



  

A Real World Case of Libraries

● Servo is a newer and work-in-progress web 
engine written in Rust

● We can use CXX-Qt to expose it in Rust!
– Not limited to Rust-enabled Qt applications, 

since it’s exposed as a regular QML 
component!

● https://github.com/KDABLabs/cxx-qt-servo-web
view

https://github.com/KDABLabs/cxx-qt-servo-webview
https://github.com/KDABLabs/cxx-qt-servo-webview


  

What To Avoid

● Don’t think: “rewrite in Rust”
– Fruitless endeavor, costly, and really no one wants to do 

that
– There are benefits but those tend to be very little 

compared to the drawbacks
– Not *everything* needs to be written in Rust either



  

Technical Part Begin

● Now it’s time to talk technical bits

● This can be more boring or more interesting, depending on 
you



  

Integrating Rust and C++



  

It’s Happening!?
● “Rewrite in Rust” is already happening?!?

● Angelfish (Web Browser)

– Uses an adblocking crate

● Pikasso (Drawing)

– Uses a crate for tessellation

● Akonadi (Personal Information Management)

– Uses a crate for HTML parsing (woo! security!)



  

Rust “Safety”

● Includes lots of safety features, tries to pave over some 
common pitfalls we see in C++

● … How?



  

C++ Example
class SomeClass {
    public:
    void do_your_thing();
    std::vector<int> values;
};

void SomeClass::do_your_thing() {
    values.clear();
}

int main() {
    SomeClass *c = new SomeClass();
    c->values = {1, 2, 3, 4, 5}; 
    for (const auto &value : c->values) {
        if (value == 2)
            c→do_your_thing();
        std::cout << value << std::endl;
    }
    return 0;
}

1
2
3
4
5

Invalidating the 
iterator, destroying 

values, oh no!

Nonsensical output

Compiler is completely 
happy :-)



  

struct SomeStruct {
    values: Vec<i32>
}

impl SomeStruct {
    fn do_your_thing(&mut self) {
        self.values.clear();
    }
}

fn main() {
    let mut s = SomeStruct {
        values: vec![1, 2, 3, 4, 5]
    };
    
    for val in &s.values {
        if *val == 2 {
            s.do_your_thing();
        }
        println!("{val}")
    }
}

The same, destructive 
action we’re doing in C++.

What will 
happen?



  

Rust Example
error[E0502]: cannot borrow `s` as mutable because it is also borrowed 
as immutable
  --> src/main.rs:18:13
   |
16 |     for val in &s.values {
   |                ---------
   |                |
   |                immutable borrow occurs here
   |                immutable borrow later used here
17 |         if *val == 2 {
18 |             s.do_your_thing();
   |             ^^^^^^^^^^^^^^^^^ mutable borrow occurs here

For more information about this error, try `rustc --explain E0502`.



  

Rust “Safety”

● NOT a silver bullet

– Logic bugs are not protected, that’s still possible in both Rust and 
C++

● Memory and static type safety are touted as security benefits

– There’s still benefits to taking advantage of it even in non-security 
scenarios

● Rust can make you a better C++ programmer, and vice versa



  

Sliding Scale

● Integrating Rust is a sliding scale and there’s rarely a perfect 
solution for every project
– Falling into the “rewrite in Rust” mindset will lead to 

disappointment

● Start small and work your way up in existing applications



  

Methods to Integrate Rust

● There are many, many ways to expose Rust to C++ and vice versa

– We’ll focus on just CXX today, but there are many more 
solutions out there

● Bindings take a non-trivial amount of work to write and design 
initially, there’s no avoiding that with any tool

● CXX will allow us to express and use C++ types without having to 
worry about C FFI



  

Corrosion

● Tool used by almost every Rust & C++ 
application

● Hooks together CMake with Rust’s Cargo
– Exposes Rust libraries as regular CMake 

targets

● https://github.com/corrosion-rs/corrosion

https://github.com/corrosion-rs/corrosion


  

CXX

● Glues C++ and Rust together

● Very opinionated and tries to produce straightforward 
and native-looking APIs for both languages
– Tries to remove the ugliness of dealing with FFI

● Handles C++ compilation in Cargo as well, if you want

● https://github.com/dtolnay/cxx

https://github.com/dtolnay/cxx


  

CXX

● Example can be found in KDE!

● See akonadi-search

pub fn convert_to_text(html: String) -> String {
    from_read(html.as_bytes(), html.len())
}

#[cxx::bridge]
mod ffi {
    extern "Rust" {
        fn convert_to_text(html: String) -> String;
    }
}

It can be that 
simple? Wow!



  

CXX-Qt (Sponsored )💰
● Created in 2021 by KDAB, still maintained by Andrew Hadzen and Leon 

Matthes
– Updated continuously ever since

● Maintainers are receptive to contributions
– No CLA!

● Is one of the largest and feature-filled Qt bindings in Rust currently
– We have a comparison chart in the README

● https://github.com/KDAB/cxx-qt

https://github.com/KDAB/cxx-qt


  

CXX-Qt (Sponsored )💰
#[cxx_qt::bridge]
pub mod qobject {
    ...
    unsafe extern "RustQt" {
        #[qobject]
        #[qml_element]
        #[qproperty(i32, number)]
        #[qproperty(QString, string)]
        type MyObject = super::MyObjectRust;
    }
    ...
}

Equivalent to Q_OBJECT 
and QML_ELEMENT

Equivalent to 
Q_PROPERTY

(Property getters/setters 
can be auto-created)

The QObject type
(Exposed to C++) The Rust type



  

CXX-Qt (Sponsored )💰
● Lots of other Qt-isms are supported

– Invokables via qinvokable
● Usable from both Rust, C++, and QML

– Overriding base methods (usually for QabstractItemModel)

– Threading

– QEnum, Qnamespace

– Bindings for a lot of the Qt API, and more is always being added

– Examples for most of these are in the cxx-qt repository



  

Kontrast



  

Kontrast

● Proof of concept showing what a CXX-Qt KDE application 
may look like

● Written by Darshan Phaldesai

● Features Rust + QML

● https://github.com/mystchonky/kontrast-rs

https://github.com/mystchonky/kontrast-rs


  

Kontrast

● Since it’s supposed to be the same application, we can do 
some naive comparisons!

● Backend code is a single class
– C++: 127 LoC (header) + 362 LoC (source)
– Rust: 339 LoC

● Comparable in LoC, but this is only a single and simple case



  

cxx-kde-frameworks

● CXX bindings for some KDE Frameworks

– Written by Darshan Phaldesai
– Frameworks is ideal for this thanks to it’s ABI and 

general API stability

● Still a work-in-progress, not supposed to be official

● https://github.com/mystchonky/cxx-kde-frameworks

https://github.com/mystchonky/cxx-kde-frameworks


  

cxx-kde-frameworks
KLocalizedString::set_application_domain(&QByteArray::from("konstrast"));

let mut about_data = KAboutData::from(
    QString::from("konstrast"),
    i18nc("@title", "Kontrast"),
    QString::from("TEST"),
    i18nc("@title", "A constrast checker application. Now oxidized!"),
    License::GPL_V3,
);

KAboutData::set_application_data(about_data);

...

if let Some(mut engine) = engine.as_mut() {
    KLocalizedContext::initialize_engine(engine.as_mut().as_qqmlengine());
    engine.load(&QUrl::from("qrc:/qt/qml/org/kde/kontrast/src/qml/Main.qml"));
}

loadFromModule is being 
worked on



  

cxx-kde-frameworks

● Open questions:
– If we want this to become official, should the bindings be 

centralized in one repository?
– We should review which frameworks are typically used 

QML applications (on the C++ side)
– Packaging and distribution



  

Wrapping Up



  

Conclusion

● Rust is a relatively new and exciting language for newer 
developers

● We have new and upcoming bindings for Qt and KDE 
Frameworks

● Rust can be offered as an option, not a replacement



  

Join in!

● CXX-Qt developers are available on Zulip
– https://cxx-qt.zulipchat.com/

● GitHub
– https://github.com/KDAB/cxx-qt

● KDE Rust Matrix
– #kde-rust:kde.org

https://cxx-qt.zulipchat.com/
https://github.com/KDAB/cxx-qt
https://go.kde.org/matrix/#/%23kde-rust:kde.org


  

Q&A
● Questions?

● Slide deck is available online

CXX-Qt Getting Started



  

Thank you!
joshua.goins@kdab.com
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