
C++, Rust and Qt: Easier than you think
Joshua Goins

C++, Rust AND Qt?
Really?

Overview
● Non-technical bits:

– What is Rust?

– Rust in KDE
● What we have and what we could have

● For technical wizards:

– Possible benefits of Rust (for a C++ programmer)

– Integration strategies for Qt, Rust and C++
● Existing applications to take inspiration from

No Previous Qt + Rust Talk?

● I quickly skimmed past programs:
– Tobias Hunger talking about Rust + Slint UI (2023)
– Méven talking about Rust in KDE (2020)
– Emma showcasing Rust support in KDevelop (2017)

● We have plenty of stuff to talk about!

Who Am I?

● Joshua Goins

● Software Engineer at KDAB

● Been hacking away at KDE for a couple of
years now

● Have been using Rust for lots of personal
projects, I want to use Qt in them!

Rust Basics

What Is Rust?

● Systems language, like C++

● Officially released in 2015, but still a relatively new language

● Focuses on “safety” and lots of interesting compiler-based
checks

● Similar syntax to C++ and C, in some surface level aspects

Rust Features
● “Batteries included”

– Testing suite

– Package system for developers

– Build system

– Benchmarking (soon!)

– Standard libraries

– Toolchains for obscure targets

Rust “Promises”

● Rust tries to be more safe than C++

● Checks for:
– Memory safety
– Thread safety
– Ownership

● We’ll go over an example later in the technical section

Rust in KDE

Why Are We Even Here?

● KDE has always been written in C++, why should we care?

● What can Rust bring to the table?

● Why Rust and not X, Y or [insert your favorite language]?
– I can do what I want!
– Rust has lots of tools for C/C++ integration

What Rust Can Bring to the Table
● New contributors?

– Less and less people are interested in C++
– They say its “legacy” and “Rust is more interesting”
– And also that C++ is a waste of time :-(
– Regardless if that’s true, Rust contributors are a huge untapped

market
– If we want a healthy flow of new contributors, we have to start

thinking about this stuff!

What Rust Can Bring to the Table

Source: StackOverflow Developer Survey, 2024

One of the most
desired languages!

C++ is still loved!

https://survey.stackoverflow.co/2024/

What Rust Can Bring to the Table
● Thinking outside the box

– Rust is in dire need of GUI applications

– As KDE, we want people to use Qt. By extension, they can be pulled into
KDE to use our frameworks!

– Making it easier to write Qt-enabled Rust benefits KDE and the greater
Rust ecosystem

– Using CXX, we can also write bindings for our frameworks
● More on this later!

What Rust Can Bring to the Table

● Memory safe code
– Like in Akonadi, tasks like “HTML parsing” is pretty

separated from the UI layer
– There are *real* crashes we are solving via Rust
– What are some other areas we could apply Rust to?

What Rust Can Bring to the Table

● Useful libraries exist in Rust!
– Libraries that lack a C API, can be hoisted into existing

KDE applications with a little bit of Rust glue.
– Corrosion makes this extremely easy and we’re already

shipping it in some cases
● More about this later in the technical section

A Real World Case of Libraries

● Servo is a newer and work-in-progress web
engine written in Rust

● We can use CXX-Qt to expose it in Rust!
– Not limited to Rust-enabled Qt applications,

since it’s exposed as a regular QML
component!

● https://github.com/KDABLabs/cxx-qt-servo-web
view

https://github.com/KDABLabs/cxx-qt-servo-webview
https://github.com/KDABLabs/cxx-qt-servo-webview

What To Avoid

● Don’t think: “rewrite in Rust”
– Fruitless endeavor, costly, and really no one wants to do

that
– There are benefits but those tend to be very little

compared to the drawbacks
– Not *everything* needs to be written in Rust either

Technical Part Begin

● Now it’s time to talk technical bits

● This can be more boring or more interesting, depending on
you

Integrating Rust and C++

It’s Happening!?
● “Rewrite in Rust” is already happening?!?

● Angelfish (Web Browser)

– Uses an adblocking crate

● Pikasso (Drawing)

– Uses a crate for tessellation

● Akonadi (Personal Information Management)

– Uses a crate for HTML parsing (woo! security!)

Rust “Safety”

● Includes lots of safety features, tries to pave over some
common pitfalls we see in C++

● … How?

C++ Example
class SomeClass {
 public:
 void do_your_thing();
 std::vector<int> values;
};

void SomeClass::do_your_thing() {
 values.clear();
}

int main() {
 SomeClass *c = new SomeClass();
 c->values = {1, 2, 3, 4, 5};
 for (const auto &value : c->values) {
 if (value == 2)
 c→do_your_thing();
 std::cout << value << std::endl;
 }
 return 0;
}

1
2
3
4
5

Invalidating the
iterator, destroying

values, oh no!

Nonsensical output

Compiler is completely
happy :-)

struct SomeStruct {
 values: Vec<i32>
}

impl SomeStruct {
 fn do_your_thing(&mut self) {
 self.values.clear();
 }
}

fn main() {
 let mut s = SomeStruct {
 values: vec![1, 2, 3, 4, 5]
 };

 for val in &s.values {
 if *val == 2 {
 s.do_your_thing();
 }
 println!("{val}")
 }
}

The same, destructive
action we’re doing in C++.

What will
happen?

Rust Example
error[E0502]: cannot borrow `s` as mutable because it is also borrowed
as immutable
 --> src/main.rs:18:13
 |
16 | for val in &s.values {
 | ---------
 | |
 | immutable borrow occurs here
 | immutable borrow later used here
17 | if *val == 2 {
18 | s.do_your_thing();
 | ^^^^^^^^^^^^^^^^^ mutable borrow occurs here

For more information about this error, try `rustc --explain E0502`.

Rust “Safety”

● NOT a silver bullet

– Logic bugs are not protected, that’s still possible in both Rust and
C++

● Memory and static type safety are touted as security benefits

– There’s still benefits to taking advantage of it even in non-security
scenarios

● Rust can make you a better C++ programmer, and vice versa

Sliding Scale

● Integrating Rust is a sliding scale and there’s rarely a perfect
solution for every project
– Falling into the “rewrite in Rust” mindset will lead to

disappointment

● Start small and work your way up in existing applications

Methods to Integrate Rust

● There are many, many ways to expose Rust to C++ and vice versa

– We’ll focus on just CXX today, but there are many more
solutions out there

● Bindings take a non-trivial amount of work to write and design
initially, there’s no avoiding that with any tool

● CXX will allow us to express and use C++ types without having to
worry about C FFI

Corrosion

● Tool used by almost every Rust & C++
application

● Hooks together CMake with Rust’s Cargo
– Exposes Rust libraries as regular CMake

targets

● https://github.com/corrosion-rs/corrosion

https://github.com/corrosion-rs/corrosion

CXX

● Glues C++ and Rust together

● Very opinionated and tries to produce straightforward
and native-looking APIs for both languages
– Tries to remove the ugliness of dealing with FFI

● Handles C++ compilation in Cargo as well, if you want

● https://github.com/dtolnay/cxx

https://github.com/dtolnay/cxx

CXX

● Example can be found in KDE!

● See akonadi-search

pub fn convert_to_text(html: String) -> String {
 from_read(html.as_bytes(), html.len())
}

#[cxx::bridge]
mod ffi {
 extern "Rust" {
 fn convert_to_text(html: String) -> String;
 }
}

It can be that
simple? Wow!

CXX-Qt (Sponsored)💰
● Created in 2021 by KDAB, still maintained by Andrew Hadzen and Leon

Matthes
– Updated continuously ever since

● Maintainers are receptive to contributions
– No CLA!

● Is one of the largest and feature-filled Qt bindings in Rust currently
– We have a comparison chart in the README

● https://github.com/KDAB/cxx-qt

https://github.com/KDAB/cxx-qt

CXX-Qt (Sponsored)💰
#[cxx_qt::bridge]
pub mod qobject {
 ...
 unsafe extern "RustQt" {
 #[qobject]
 #[qml_element]
 #[qproperty(i32, number)]
 #[qproperty(QString, string)]
 type MyObject = super::MyObjectRust;
 }
 ...
}

Equivalent to Q_OBJECT
and QML_ELEMENT

Equivalent to
Q_PROPERTY

(Property getters/setters
can be auto-created)

The QObject type
(Exposed to C++) The Rust type

CXX-Qt (Sponsored)💰
● Lots of other Qt-isms are supported

– Invokables via qinvokable
● Usable from both Rust, C++, and QML

– Overriding base methods (usually for QabstractItemModel)

– Threading

– QEnum, Qnamespace

– Bindings for a lot of the Qt API, and more is always being added

– Examples for most of these are in the cxx-qt repository

Kontrast

Kontrast

● Proof of concept showing what a CXX-Qt KDE application
may look like

● Written by Darshan Phaldesai

● Features Rust + QML

● https://github.com/mystchonky/kontrast-rs

https://github.com/mystchonky/kontrast-rs

Kontrast

● Since it’s supposed to be the same application, we can do
some naive comparisons!

● Backend code is a single class
– C++: 127 LoC (header) + 362 LoC (source)
– Rust: 339 LoC

● Comparable in LoC, but this is only a single and simple case

cxx-kde-frameworks

● CXX bindings for some KDE Frameworks

– Written by Darshan Phaldesai
– Frameworks is ideal for this thanks to it’s ABI and

general API stability

● Still a work-in-progress, not supposed to be official

● https://github.com/mystchonky/cxx-kde-frameworks

https://github.com/mystchonky/cxx-kde-frameworks

cxx-kde-frameworks
KLocalizedString::set_application_domain(&QByteArray::from("konstrast"));

let mut about_data = KAboutData::from(
 QString::from("konstrast"),
 i18nc("@title", "Kontrast"),
 QString::from("TEST"),
 i18nc("@title", "A constrast checker application. Now oxidized!"),
 License::GPL_V3,
);

KAboutData::set_application_data(about_data);

...

if let Some(mut engine) = engine.as_mut() {
 KLocalizedContext::initialize_engine(engine.as_mut().as_qqmlengine());
 engine.load(&QUrl::from("qrc:/qt/qml/org/kde/kontrast/src/qml/Main.qml"));
}

loadFromModule is being
worked on

cxx-kde-frameworks

● Open questions:
– If we want this to become official, should the bindings be

centralized in one repository?
– We should review which frameworks are typically used

QML applications (on the C++ side)
– Packaging and distribution

Wrapping Up

Conclusion

● Rust is a relatively new and exciting language for newer
developers

● We have new and upcoming bindings for Qt and KDE
Frameworks

● Rust can be offered as an option, not a replacement

Join in!

● CXX-Qt developers are available on Zulip
– https://cxx-qt.zulipchat.com/

● GitHub
– https://github.com/KDAB/cxx-qt

● KDE Rust Matrix
– #kde-rust:kde.org

https://cxx-qt.zulipchat.com/
https://github.com/KDAB/cxx-qt
https://go.kde.org/matrix/#/%23kde-rust:kde.org

Q&A
● Questions?

● Slide deck is available online

CXX-Qt Getting Started

Thank you!
joshua.goins@kdab.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

