Kwin Effect Changes

Sept 2024, Akademy

David Edmundson

davidedmundson@kde.org

@d_ed

{!‘(Kwin’s Old State - Massively Oversimplified

* Main code does drawing of everything using OpenGL

* Effects throw random OpenGL calls at the screen
throughout

MouseClickEffect: drawCircleGl st RenderViewport &viewport st QColor

num_segments 80
theta 2 3.1415926 t({num_segments
= cosf(theta // precalculate the sine and cosine
5 sinf(theta
scale viewport.scale

start at angle = 0

GLVertexBuffer *vbo GLVertexBuffer: :streamingBuffer
vbo->reset

QList=QVector2D= verts

verts.reserve(num_segments 2

for A 0; i1 num_segments 1k
verts.push_back(QVector2D((x (a scale

..1=|-I [Ne rotation mat

16 X

X L
b 5

vbo-=setVertices(verts
ShaderManager: :instance getBoundShader setUniform(GLShader: :ColorUniform: :Color
vbo->render(GL_LINE_LOOP

{!‘(Example - End Result

{!‘(What the core devs want

* Really low level API
* Light-weight scenegraph of simple rectangles
* Path to Vulkan

{!‘(What the effect developers want

* Really high level API
* Complex shapes and imports

* Not to write separate Vulkan code

The solution is to have two solutions!

* Effects use QtQuick to render into a texture

* Easy to use items to represent Windows and Desktops

* Core render code renders these textures with zero-copy

Benefits

{!‘(Benefits - Easy to Code

* Designers can contribute to
KWin

* Features like anti-aliasing
for free

* Readable code

{!‘(Benefits - Interactivity

* Adding interactivity is easy
* We can add drag and drop

* Krunner integration was
easy

* QtQuick 3D is amazing!

* Relatively easy to use

View3D {
view
anchors parent

PerspectiveCamera {

eulerRotation

by

Directionallight {
eulerRotation
}

Hand {

hand
25

Vector3dAnimation on eulerRotation {

(45, C
(45, 90

And Particles!

And 3D particles!

What will you write?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

