<R

Why and how to
use KDE frameworks
In non-KDE apps

Javier O. Cordero Pérez

M The Qt, OpenGL and C++ experts

fe

Who is this for?

« The person who wants to make a Linux app

« The professional in the lookout for cool libraries

Linux Dev Professional

Canonicus Linux programmator Peritus fanaticus codex elit

futurum

The Qt, OpenGL and C++ experts

AKDAB

« YouUu'll have learned about frameworks the

By th e e n d KDE Community has to offer

« You'll be able to use KDE frameworks

Of th iS tal k in your own projects

« You'll have guidance on how to distribute

apps that make use of KDE frameworks

The Qt, OpenGL and C++ experts

4KDAB

$ whoami

Javier O. Cordero Pérez (Cuperino)
Software Engineer at KDAB
Degrees in:

Computer Science &

Mass Media Communications

Author of QPrompt Teleprompter app

The Qt, OpenGL and C++ experts

KDE Frameworks

« A collection of add-ons libraries for programming with Qt
« Made primarily to satisfy the needs of the KDE Community

: -".-:'.*'.-.- https://develop.kde.org/products/frameworks

The Qt, OpenGL and C++ experts

https://develop.kde.org/products/frameworks#frameworks

Let’s see KDE Frameworks
In action!

4AKDAB

Qt Creator

. Needs no introduction
« Uses KSyntaxHighlighting

for source code highlighting

https://www.qt.io/download-qt-installer-oss

https://www.qt.io/download-qt-installer-oss#download-qt-installer-oss

4KDAB

Subsurface

Divelog app
Widgets Ul for desktop

Kirigami on iOS and Android

Goal: Share common C++ backend

Related talk: Desktop to Mobile - Developing for Multiple
Platforms Without Losing Your Mind
https://youtu.be/pa-npvZcm60?si=OCRUrvit2PZE2NLB

The Qt, OpenGL and C++ experts

https://youtu.be/pa-npvZcm6o?si=OCRUrvit2PZE2NLB#pa-npvZcm6o?si=OCRUrvit2PZE2NLB

4KDAB

QPrompt

Teleprompter app

Used by professionals and independent Prompt takes the
stress away from

teleprompter
operation, so you can
enjey=media

video creators alike
Made using KCoreAddons, Ki18n,
Kirigami, KlconThemes, KCrash,

Breezelcons

n
s TS m e ————

Goal: Make a native Linux app

https://gprompt.app

https://qprompt.app/

4AKDAB

KomicsReader v A X |
omicsneaaer
) AN FEUbuntu> 72X iy |
A = 1 - 2
=/ Yice csoeriainacor

. Available on GitHub
. Made with KCoreAddons, Ki18n,
Kirigami

« It displays comic book formats

https://github.com/tubbadu/KomicsReader

The Qt, OpenGL and C++ experts

https://github.com/tubbadu/KomicsReader#KomicsReader

4AKDAB

Astra

FFXIV launcher for Linux by Joshua Goins
Supports profiles, multiple accounts, and
plugins

Made using KCoreAddons, Ki18n, Kirigami,
KlconThemes, KConfig, KArchive

Goal: Use and expand your skills

https://xiv.zone/software/astra

https://xiv.zone/software/astra#astra

KDE Frameworks

Divided into tiers:

AKDAB

« Tler 1 — Depend only on Qt, and, sometimes, a small number of
third-party libraries)

4

* Tier 2 — Additionally depend on tier 1 frameworks

Tier 3 — Have more complex dependencies

Tier 4 — “Can be safely ignored by application programmers”

('m quoting the website)

https://api.kde.org/frameworks/

A

.

]
C

Qt, OpenGL and C++ experts

https://api.kde.org/frameworks/

KDE Frameworks

“If you ask me...”

o TierQ

4

+ Extra CMake Modules

AKDAB

+ A few tiny KDE libraries outside the frameworks list

 Tier 1 — Depend on ECM and sometimes 3rdparty libs

« Tier 2 — Additionally depend on tier 1 frameworks

* Tier 3 — Have more complex dependencies

https://api.kde.org/frameworks/

A

]
C

Qt, OpenGL and C++ experts

https://api.kde.org/frameworks/

KDE Frameworks

https://api.kde.org/frameworks/

https://api.kde.org/frameworks/

Documentation API KDE Human Interface Guidelines

1K Developer

Search...

Table of Content

o Tier 1
e Tier 2
e Tier 3
e Tier 4
 Porting Aids

Filters
[Filter by platform

About

Providing everything from
simple utility classes to
integrated solutions for
common requirements of
desktop applications

Maintainer
The KDE Community

Supported platforms
Android (partial), FreeBSD
(partial), Linux, macOS
(partial), Windows (partial)
Community

List of the libraries
Tier 1

Tier 1 frameworks depend only on Qt (and possibly a small number of other third-party libraries), so
can easily be used by any Qt-based project.

Framework
Attica Android | FreeBSD Linux Windows | i9S
Open Collaboration Services API
BluezQt Android | FreeBSD Linux # Windows iOS
Qt wrapper for BlueZ 5 DBus API
Breezelcons Android | FreeBSD Linux Windows | i9S
Breeze icon theme
ECM Android | FreeBSD Linux Windows | i9S
Extra CMake modules
KApiDOX Android FreeBSD Linux Windows | i9S
Scripts and data for building API documentation (dox) in a standard format and style
KArchive Android | FreeBSD Linux Windows @ iOS
File compression
KCaIendarCore Android | FreeBSD Linux Windows | iOS
The KDE calendar access library
KCodecs Android | FreeBSD | Linux Windows | i0S

Text encoding

macOS

macOS

macOS

macOS

macOS

macOS

macOS

Maintainer

The KDE
Community

The KDE
Community

The KDE
Community

The KDE
Community

The KDE
Community

The KDE
Community

The KDE
Community

The KDE
Community

4KDAB

https://api.kde.org/frameworks/

KDE Frameworks

>

RS TIMER COUNTDOWN

START PROMPTER READING REGION INDICATO

QPrompt takes the
stress away from
teleprompter
operation, SO you can

enioxmedia

Font size
) —tl
104% (074)

I U &

The Qt, OpenGL and C++ experts

s://Ix.com/JCuperino/status/1482379644716425222

https://x.com/JCuperino/status/1482379644716425222#1482379644716425222

KDE Frameworks

Sonnet

Multi-language spell checker

Introduction

Sonnet is a plugin-based spell checking library for Qt-based applications. It supports several different plugins, including
HSpell, Enchant, ASpell and HUNSPELL.

It also supports automated language detection, based on a combination of different algorithms.

The simplest way to use Sonnet in your application is to use the SpellCheckDecorator class on your QTextEdit.

Example

#include <QTextEdit>
#include <spellcheckdecorator.h>

MyFoo: :MyFoo(QWidget *parent) : QWidget(parent)
{
QTextEdit *textEdit = new QTextEdit(this);
Sonnet::SpellCheckDecorator *decorator = new Sonnet::SpellCheckDecorator(textEdit);

The Qt, OpenGL and C++ experts

KDE Frameworks

Tier 2

KNotifications

KNotifications is a cross-platform library for creating popup notifications.

It currently supports Linux (and other Unix platforms that implement freedesktop.org
notifications), Windows (8 or later), macOS and Android (version 5.0 or later).

Please consult the KDE Human Interface Guidelines for when using Notifications is
appropriate.

KNotification is the main entry point for using KNotifications.

The global config file

In order to perform a notification, you need to create a description file, which contains default
parameters of the notification. It needs to be installed to knotifications6/appname.notifyrcin a
QStandardPaths::GenericDatalLocation directory. On Android, this path is grc:/knotifications6/.

The filename must either match QCoreApplication::applicationName or be specified as the
component name to the KNotification object.

The Qt, OpenGL and C++ experts

KDE Frameworks

Tier 1

Yellle

Desktop hardware abstraction

Introduction

Solid is a device integration framework. It provides a way of querying and interacting with hardware independently of the
underlying operating system.

It provides the following features for application developers:

» Hardware Discovery
= Power Management
« Network Management

Usage

If you are using CMake, you need to have

find_package (KF6Solid NO_MODULE)

(or similar) in your CMakeLists.txt file, and you need to link to KF6::Solid.

See the documentation for the Solid namespace, and the tutorials on TechBase.

The Qt, OpenGL and C++ experts

KDE Frameworks

Tier 1

KUserFeedback

Framework for collecting feedback from application users via telemetry and targeted surveys.

Telemetry

« Extensible set of data sources for telemetry.
« Full control for the user on what data to contribute.

Surveys

» Distribute surveys and offer users to participate in them.
» Survey targeting based on telemetry data.
« Allow the user to configure how often they want to participate in surveys.

Components

This framework consists of the following components:

Libraries for use in applications.

QML bindings for the above.

A server application.

A management and analytics application.

The Qt, OpenGL and C++ experts

KDE Gear

KDE Applications

KDE is a community of friendly people who create over 200 apps which run on any Linux desktop, and often other platforms
too. Here is the complete list.

Filter by name and description All categories All platforms Popularity, descending

!(/ »:/I!

Okular
Document Viewer

ﬂ

Ark
Archiving Tool

L |
——

Spectacle

Screenshot Capture
Utility

Dolphin
File Manager

HESUERYS EN
Monitor

System Monitor

>

KDE Connect

Device Synchronization

Kdenlive
Video Editor

&K

Kate
Advanced Text Editor

B4

Discover
Software Center

4

Konsole
Terminal

)

Gwenview
Image Viewer

9

Krita
Digital Painting

The Qt, OpenGL and C++ experts

KDE Frameworks

« Pros « Cons

« Expand Qt’s functionality « Tight integration with
KDE’s infrastructure can be
iInconvenient for non-KDE

« Well documented apps

« *Cross platform

« Open governance

The Qt, OpenGL and C++ experts

KDE Frameworks

« Pros « Cons

« Expand Qt’s functionality « Tight integration with
KDE’s infrastructure can be
iInconvenient for non-KDE

« Well documented apps

« *Cross platform

. Open governance *iOS support is very limited

*WASM support is presently non-existent

https://api.kde.org/frameworks

The Qt, OpenGL and C++ experts

https://api.kde.org/frameworks#frameworks

KDE Frameworks

« Pros « Cons

« Expand Qt’s functionality « Tight integration with KDE’s
Infrastructure can be
Inconvenient for non-KDE

« Well documented apps

« *Cross platform

« Open governance « Strong copyleft licenses

require consideration
. Free software & open

source

The Qt, OpenGL and C++ experts

AKDAB

Res pe cti n g . KDE Frameworks are licensed under

LGPL, BSD, or MIT licenses

th e I i ce n ses . KDE Apps use GPL licenses

https://community.kde.org/Policies/Licensing_Policy P e i

https://community.kde.org/Policies/Licensing_Policy#Licensing_Policy

00

01

10

11

The freedom to run the program as you wish,
for any purpose

The freedom to study how the program works, and change it [..]

The freedom to redistribute copies so you can help others [..]

The freedom to distribute copies of your modified versions to others
[..] give the whole community a chance to benefit from your changes.

- The four essential freedoms
https://www.gnu.org/philosophy/free-sw.en.html

https://www.gnu.org/philosophy/free-sw.en.html#free-sw.en

GPL family licenses not only give freedoms, they
also help defend them

They do this by requiring that you distribute the source
code for changes in derivative works

Under the LGPL, non-GPL family programs can be distributed
under any terms if they’re not derivative works

For a program not to be considered derivative, certain
requirements must be met

Also, commercial use is allowed

[=;

4. Combined Works (LGPL-3 & e

You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict mod|f|cat| n of the
portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also
do each of the following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use
are covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application
Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a modified version
of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for
conveying Corresponding Source.

1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at
run time a copy of the Library already present on the user's computer system, and (b) will operate properly with a modified
version of the Library that is interface-compatible with the Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of
the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use
option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)

[=:

4. Combined Works (LGPL-3 5 e

You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict mod|f|cat| n of the
portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also
do each of the following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use
are covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library
among these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding
Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a
modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU
GPL for conveying Corresponding Source.

- 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a)
uses at run time a copy of the Library already present on the user's computer system, and (b) will operate properly with a
modified version of the Library that is interface-compatible with the Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6
of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use
option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)

How to make use of
KDE Frameworks

Prepare your development
environment

Prepare your developer

distribution environment

. How libraries are installed for development
is be closely tied to how the app is packaged for distribution

A &

4 Build it Distribution’s KDE Buﬂder KDE’s Craft
yourself packages

kdesrc build The Qt, OpenGL and C++ experts

Prepare your
distribution environment

Covers the most Linux only
platforms, _ The KDE way
requires Beginner Unsuitable for
most mastery friendly 3" parties
L\ ; KDE
4 Build it Distribution’s KDE Builder
kdesrc-build

yourself packages or

Windows
MacOS
Applmage
*Android

KDE’s Craft

The Qt, OpenGL and C++ experts

KDE Cratft

Pros

Robust packaging system
built with Python

You can use it to build
Windows, Mac, Applmage,
FreeBSD

Easier than packaging apps
yourself

[=]
Ly https://community.kde.org/Craft

Ccons

Constantly changing,
hard to keep up

Old versions of KDE
frameworks are removed

Android build scripts are
tied to KDE’s ClI, which is
only for KDE Projects

The Qt, OpenGL and C++ experts

https://community.kde.org/Craft#Craft

Distribution’s packages ;

« Pros « Cons

« Easy to get started... « Distributions update these
Install the copy of the library listed packages sporadically
with a -dev or -devel suffix
E.Q. E.Q.
libkf5Ssolid-dev (Ubuntu) Ubuntu 24.04 ships v5.115.0 of
kf6-solid-devel (Fedora) KDE frameworks, which is

deprecated (using KDE Neon
. Easier to make packages while targeting Debian is

« Simply list your dependencies recommended)

https://develop.kde.org/docs/getting-started/building/cmake-build The Qt, OpenGL and C++ experts

https://develop.kde.org/docs/getting-started/building/cmake-build#cmake-build

Universal Packages -

A 4 snapcraft

« Similar to traditional Linux packages FLATPAK

« Instead of installing additional packages, you link against a Runtime and SDK that brings
all KDE Frameworks

. For Flatpak, use:
“runtime": "org.kde.Platform",
"runtime-version": "6.7”, // Replace version number with the most current one
"sdk": "org.kde.Sdk",
Learn more at: https://develop.kde.org/docs/packaging/flatpak/packaqging/

« For Snaps, use the latest variants of:
https://snapcraft.io/kf6-core22
https://snapcraft.io/kf6-core22-sdk ObJ%0

{ « Learn more at: https://ubuntu.com/tutorials/create-your-first-snap#1-overview

O}

The Qt, OpenGL and C++ experts

https://develop.kde.org/docs/packaging/flatpak/packaging/
https://snapcraft.io/kf6-core22#kf6-core22
https://snapcraft.io/kf6-core22-sdk#kf6-core22-sdk
https://ubuntu.com/tutorials/create-your-first-snap#1-overview#create-your-first-snap#1-overview

Build i1t yourself

e« Pros
« Develop at your own pace

« Develop for architectures that
are unsupported by KDE, like
RISC-V and ARM64 Windows

« Distribute on platforms that are
limited by KDE’s current
Infrastructure, such as Android
and WASM

« Cons

AKDAB

/AN

« For each platform you deploy

You build all libraries
manually

You install all libraries
manually

You create packages or
Installers manually

The Qt, OpenGL and C++ experts

CMake

« Build system for C++ code

« It abstracts compilers, packaging tools, and
other tools for build and distribution.

« CMake Generators will produce code

suitable for building projects with vastly

different compilers

https://cmake.org The Qt, OpenGL and C++ experts

https://cmake.org#cmake

Making use of KDE Frameworks

set(KF_MIN_VERSION 6.2.0) # Set to match the oldest supported distro
find package(ECM REQUIRED NO_MODULE)

find package(KF6 ${KF_MIN_VERSION} REQUIRED COMPONENTS
CoreAddons

)
target _link _libraries($S{PROJECT _NAME} PRIVATE

KF6: :CoreAddons
)

4

The Qt, OpenGL and C++ experts

Making use of KDE Frameworks

e, & find package is recommended because it's what KDE frameworks
' themselves use

« All the libraries depend on ECM so,
at the very least, ECM must be installed

« If you are able to install ECM, you should be able to install the other
libraries

Due to hard coded values the KDE frameworks often don’t compile if
you add via add subdirectory

ExternalProject Add might not work in CI environments without
network access (Flatpak CI)

The Qt, OpenGL and C++ experts

https://cmake.org/cmake/help/latest/command/find_package.html#find_package
https://cmake.org/cmake/help/latest/command/add_subdirectory.html#add_subdirectory
https://cmake.org/cmake/help/latest/module/ExternalProject.html#ExternalProject

ECM

Extra CMake Modules

. Set of build scripts for CMake
« Ease building and distributing
« Required for building all KDE

Frameworks

The Qt, OpenGL and C++ experts

Extra CMake Modules

B extra-cmake-modules

Mame

- modules
? - kde-modules
» . find-modules
? - toolchain

> - tests

? . test-modules

B modules

g
) [@) @ 6) 6o |3

I B ©

)]

0 @) m @) [o

Il tests

ECMQueryQt.cmake
ECMQmIModule6.cmake
ECMAddTests.cmake
QtVersionOption.cmake
ECMWinResolveSymlinks.cmake
ECMVersionHeaderh.in
ECMUseFindModules.cmake
ECMUninstallTarget.cmake
ECMSourceVersionControl.cmake
ECMSetupVersion.cmake

ECMSetupQtPluginMacroNames.cmake

ECMQueryQmake.cmake
ECMQtDeclareLoggingCategory.h.in
ECMQtDeclareLoggingCategory.cpp.in
ECMQtDeclareLoggingCategory.cmake
ECMQmLoader.cpp.in
ECMQMLModules.cmake
ECMQmIModule5.cmake
ECMQmIModule.h.in.license
ECMQmIModule.h.in
ECMQmIModule.cpp.in.license
ECMQmIModule.cpp.in
ECMQmIModule.cmake

/» ECMQchDoxygenLayout.xml

] V‘ﬂ] JT\] ‘T\] "T\] f‘ﬂ] J'T\] "T\] "T\] Fﬂ]

ECMQchDoxygen.config.in
ECMPoQmTools.cmake
ECMPackageConfigHelpers.cmake
ECMOptionalAddSubdirectory.cmake
ECMMarkNonGuiExecutable.cmake
ECMMarkAsTest.cmake
ECMInstalllcons.cmake
ECMGenerateQmlTypes.cmake
ECMGeneratePriFile.cmake

M kde-modules

B modules

Name

b

[m

) @) @) @) @ [

[[@) @) @) @ @))))

B tests 8 kde-modules

kde-git-commit-hooks

prefix.sh.cmake
KDEPackageAppTemplates.cmake
KDEInstallDirs6.cmake
KDECMakeSettings.cmake
KDEMetalnfoPlatformCheck.cmake
KDEFrameworkCompilerSettings.cmake
prefix.sh.fish.cmake
KDESetupPrefixScript.cnake
KDEInstallDirsCommon.cmake
KDEInstallDirs5.cmake
KDEInstallDirs.cmake
KDEGitCommitHooks.cake
KDEFrameworkCompilerLegacySettings.cmake
KDECompilerSettings.cake
KDEClangFormat.cmake
clang-format.cmake
appstreamtest.cmake

B modules B tests 8 find-modules

=

£| FindWaylandScanner.cmake

sip_generator.py

[(& [

settings.gradle.cmake
run-sip.py
#| rules_engine.py

#| Qt5Ruleset.py

£l local.properties.cmake
=| GeneratePythonBindingUmbrellaModule.cmakd
FindXCB.cmake

FindX11_XCB.cmake
FindwaylandProtocols.cmake

m

) [

Findwayland.cmake
FindUDev.cmake
FindTaglib.cmake
FindSharedMimeInfo.cmake
FindSeccomp.cmake
FindSasl2.cmake
FindReuseTool.cmake

0 i) @)) @) @) @)))

FindQtWaylandScanner.cmake

FindQHelpGenerator.cmake

) [) [[

FindPythonModuleGeneration.cmake
FindPulseAudio.cmake

FindPoppler.cmake

FindPhoneNumbercmake
FindOpenEXR.cmake
FindLibMount.cmake

FindLibGit2.cmake
FindLibExiv2.cnake
FindLibcap.cmake
FindKF6.cmake
FindKF5.cmake
FindIsoCodes.cmake

) @) @) @)) @)) @) @)

FindInotify.cmake

CMakelLists.txt

set(KF_MIN_VERSION 6.2.0) # Set to match the oldest supported distro
find package(ECM REQUIRED NO_MODULE)
find package(KF6 ${KF_MIN_VERSION} REQUIRED COMPONENTS
CoreAddons)
target_link _libraries($S{PROJECT _NAME} PRIVATE
KF6: :CoreAddons)

The Qt, OpenGL and C++ experts

Install paths for Linux metadata -

« # The following KDE ... variables are provided by ECM:

install(FILES myapp.appdata.xml DESTINATION ${KDE_INSTALL METAINFODIR}
instal(PROGRAMS myapp.desktop DESTINATION ${KDE_INSTALL_APPDIR})

The Qt, OpenGL and C++ experts

Set icons for app binary & installers

set(ICONS_FOLDER S${CMAKE_ CURRENT_SOURCE DIR}/icons/hicolor)
set(RASTER_ICONS
S{ICONS_FOLDER}/16-apps-com.publisher.myapp.png

[..]

S{ICONS_FOLDER}/512-apps-com.publisher.myapp.png
set(VECTOR_ICON S{ICONS_FOLDER}/sc-apps-com.publisher.myapp.svg)
ecm_install_1icons(

ICONS ${RASTER_ICONS} ${VECTOR_ICON}

DESTINATION ${KDE_INSTALL_ICONDIR})
ecm_add_app_icon(myapp ICONS ICONS S${RASTER_ICONS})
add_executable($S{PROJECT _NAME} [..] S{myapp_ICONS})

The Qt, OpenGL and C++ experts

Matching app version everywhere

project(myapp VERSION 1.0.0)
ecm_setup_version($S{PROJECT_VERSION}

VARIABLE PREFIX MYAPP

VERSION_HEADER "S${CMAKE_ CURRENT_BINARY DIR}/myapp_version.h")
// In C++

MYAPP_VERSION_STRING

The Qt, OpenGL and C++ experts

AKDAB

Build
. Set of build scripts for CMake

|
It « Ease building and distributing
« Required for building all KDE

yourself -

The Qt, OpenGL and C++ experts

Build dependencies

« All platforms

. Git
. Bash
« Python 3

« In MacOS, also run:
e Xcode-select -install
« In Ubuntu, you can use.

sudo apt install python3 python3-pip python3-venv build-essential git wget

4

The Qt, OpenGL and C++ experts

Manually build and install
KDE Frameworks

From a framework’s root folder
mkdir build # create make a build folder

Set the kinds of builds you want to create
CMAKE_CONFIGURATION _TYPES="Debug;Release;RelWithDebInfo;MinSizeRel"

Set the build type that will be used to make a release
CMAKE_BUILD_TYPE="Release"

CMAKE_PREFIX_PATH is the folder from which CMake searches for libraries
Set it to point towards your Qt installation.
CMAKE_PREFIX_PATH="~/Qt/6.7.2/gcc/"

CMAKE_INSTALL_PREFIX is the folder where CMake install() instructions will
copy files to. We’ll install KF alongside Qt.
CMAKE_INSTALL_PREFIX=SCMAKE PREFIX PATH

The Qt, OpenGL and C++ experts

Manually build and install
KDE Frameworks

Run cmake for preparations

cmake -DCMAKE_CONFIGURATION_TYPES=$CMAKE_CONFIGURATION_TYPES \
-DBUILD TESTING=OFF \
-BUILD_ QCH=OFF \
-DCMAKE_PREFIX_ PATH=SCMAKE_PREFIX_PATH \
-DCMAKE_INSTALL_PREFIX=$CMAKE_INSTALL_PREFIX \
-B ./build .

Build the project with previous configuration

cmake --build ./build --config SCMAKE BUILD TYPE

Install the library to CMAKE_INSTALL_PREFIX

cmake --install ./build

The Qt, OpenGL and C++ experts

A script to automatically build and
install your libraries 1/8

« Bash can serve as a minimum common denominator across platforms.

« It's shipped in GNU/Linux, MacOS, and is installed alongside Git on
Windows through an MSYS environment

« Acquire your dependencies by downloading the repos as git submodules
git submodule add $PATH_TO GIT_REPO

e« git submodule add https://github.com/KDE/kcoreaddons.git

« git submodule add https://invent.kde.org/frameworks/kcoreaddons.git

4

The Qt, OpenGL and C++ experts

https://github.com/KDE/kcoreaddons.git#kcoreaddons
https://invent.kde.org/frameworks/kcoreaddons.git#kcoreaddons

A script to automatically build and
install your libraries 2/8

if [["SOSTYPE" == "linux-gnu"*]]; then
PLATFORM="1inux"
COMPILER="gcc"
elif [["SOSTYPE" == "darwin"*]]; then
PLATFORM="macos"
COMPILER="macos"
elif [["SOSTYPE" == "win32" || "SOSTYPE" ==
PLATFORM="windows"
COMPILER="msvc2019_64"
elif [["SOSTYPE" == "freebsd"*]]; then
PLATFORM="freebsd"
COMPILER="gcc"
else
PLATFORM="unix"
COMPILER="gcc"
fi

"msys"]]; then

The Qt, OpenGL and C++ experts

A script to automatically build and
install your libraries 3/8

Update submodules
echo "Downloading git submodules”
git submodule update --init --recursive

The Qt, OpenGL and C++ experts

A script to automatically build and

install your libraries 4/8

Satisfy KDE’s Python dependencies
python3 -m venv venv
if [["SPLATFORM" "windows"]]; then
source venv/Scripts/activate
else
source venv/bin/activate

fi
python -m pip install --upgrade pip
python -m pip install requirements.txt

The following goes in
requirements.txt and is
needed to make Release
builds:

sphinx
reuse

The Qt, OpenGL and C++ experts

VCPKG

« Can satisfy most of KDE’s 3rdpatry

dependencies

« Using “Classic mode” libraries are built to a
central folder. We then copy them to our
prefix

« Why not use VCPKG for installing

KDE Frameworks?

https://vcpkg.io/en/packages The Qt, OpenGL and C++ experts

https://vcpkg.io/en/packages#packages

Add VCPKG as a git submodule

mkdir -p 3rdparty
cd 3rdparty
git add submodule https://github.com/microsoft/vcpkg.git

The Qt, OpenGL and C++ experts

4AKDAB

Initialize VCPKG

e run: vcpkg new --application
It will generate a vcpkg-configuration.json file like follows:

{
"default-registry":
{
"k.‘LndH: llg.'Lt"’
"baseline": "509f71e53f45e46c13fa7935d2f6a45803580c07",
"repository": "https://github.com/microsoft/vcpkg"
3,
"registries": [
{
"kind": "artifact",
"location": "https://github.com/microsoft/vcpkg-ce-catalog/archive/refs/heads/main.zip",
"name": "microsoft"

}
]

}
The Qt, OpenGL and C++ experts

A script to automatically build and
install your libraries 5/8

Setup VCPKG
./3rdparty/vcpkg/bootstrap-vcpkg.sh -disableMetrics
if [["SPLATFORM" == "windows"]]; then
VCPKG=. /3rdparty/vcpkg/vcpkg.exe
else
VCPKG=. /3rdparty/vcpkg/vcpkg
fi
Install VCPKG packages
SVCPKG install --x-install-root "SCMAKE PREFIX PATH" package names go here
Copy installed packages into install prefix
for package in ./3rdparty/vcpkg/packages/*; do
echo S$package
cp -rf $package/* SCMAKE_PREFIX_ PATH
done

The Qt, OpenGL and C++ experts

A script to automatically build and
install your libraries 6/8

KDE Frameworks

tier_0="
./3rdparty/extra-cmake-modules"”

tier_1="
./3rdparty/kcoreaddons
./3rdparty/ki18n
./3rdparty/kirigami"

tier_2=""

tier_3=""

The Qt, OpenGL and C++ experts

A script to automatically build and
install your libraries 7/8

CMAKE CONFIGURATION TYPES="Debug;Release;RelWithDebInfo;MinSizeRel"
CMAKE BUILD TYPE="Release"
for dependency in Stier 0 Stier 1 Stier 2 Stier 3; do
echo -e "\n\n~~~" Sdependency "~~~\n"
cmake -DCMAKE_CONFIGURATION_TYPES=$CMAKE CONFIGURATION_TYPES \
-DBUILD TESTING=OFF \
-BUILD QCH=OFF \
-DCMAKE_PREFIX_PATH=$CMAKE_PREFIX_PATH \
-DCMAKE_INSTALL_PREFIX=$CMAKE_INSTALL_PREFIX \
-B ./Sdependency/build ./S$Sdependency/
cmake --build ./Sdependency/build --config SCMAKE BUILD TYPE
cmake --install ./Sdependency/build
done

The Qt, OpenGL and C++ experts

A script to automatically build and
install your libraries 8/8

echo "MyApp"

cmake -DCMAKE_CONFIGURATION_TYPES=$CMAKE_CONFIGURATION_TYPES
-DCMAKE_PREFIX_PATH=$CMAKE_PREFIX_PATH
-DCMAKE_INSTALL_PREFIX=SCMAKE INSTALL_PREFIX
-B ./build .

cmake --build build --config SCMAKE BUILD TYPE

The Qt, OpenGL and C++ experts

4AKDAB

CPack

» Part of CMake
« Abstracts various packaging tools
« Can be used to make:
* Deb & RPM packages
* NSIS installers for Windows
» Drag-and-Drop and PackageMaker
installers for macOS

) The Qt, OpenGL and C++ experts
https://cmake.org/cmake/help/book/mastering-cmake/chapter/Packaging%20With%20CPack.html

https://cmake.org/cmake/help/book/mastering-cmake/chapter/Packaging With CPack.html#Packaging With CPack

Using CPack to make builds

cd build
cpack

The Qt, OpenGL and C++ experts

Example CPack code in CMakelLlists.txt

¢ CPACK: Genet uz Jefflnuk

3
H)

1 by FreeBSD generator
set (ICONS_DIR "

set (IMAGES_DIR "4{CMAKE_SOU
set (COMPRESION_TYPE "xz"

; CPACK' Archive generator settings

r—‘{(

)

The Qt, OpenGL and C++ experts

Example CPack code in CMakelLlists.txt

AND NOT ANDROID)
CPACK: DEB specific settings

set (CPACK_DI | "Multimedia")

set (CPACK
set (CPACK "libqgt 5 (>= 6.6.2), gml-module-qt-labs-platform (>=6.6.2), gml-module

CPACK: RPM specific settings
set (CPACK_RPM_PACKAGE JP "Multimedia/Vic

"qt6-qtbase >= 6.6.2, gqt6-qtbase-gui >= 6.6.2, qt6-qtdeclarative

The Qt, OpenGL and C++ experts

Example CPack code in CMakelLists.txt

® ® ™
~+ &t o o o+ ~

(D
-~

M M M @
~ ~+ ~+ ~+

(D
~

(CP,
(CPi
(cP.
(cP
(CP.
(CP.
et (CP.
(CPi
(cP.
(«
(c

"QPrompt" "QP (WHJL”)

n

/qprompt.ico")
;1nsialler.bmp”)

/header .bmp")
PAC KAGE_CONTACT)
IE "qprompts${CM

" "l 7cense"

IDaadmall
neadme

)ef(InstallRequ1redSystemL1brar1es

")

The Qt, OpenGL and C++ experts

Example CPack code in CMakeLlists.txt

PPLE AND NOT IOS)
"DragNDrop")
"y)
- "QPrompt")

)

= VERSION}")
Eaiens™)
)

/DMGBackground.png")

The Qt, OpenGL and C++ experts

Example CPack code in CMakeLlists.txt

PACKAGE_CONTACT})
n)

/qt6-base, xll-toolkits/qt6-declarative, graphics/qt6-svg,

The Qt, OpenGL and C++ experts

To include (libraries) '
or not to include?

Depending on the platform you'll target is whether you will need
to include the libraries packaged alongside your program

Include

Include Not include

« For Windows, MacOS and other « For traditional Linux package
OS without a traditional package managers
manager . For Snap and Flatpak universal
. For Applmages package formats

Not include The Qt, OpenGL and C++ experts

Tools to aggregate libraries

« windeployqt
« macployqgt

SCMAKE_PREFIX PATH/bin/windeployqt.exe \
. /build/bin/SCMAKE BUILD TYPE/MyApp.exe

SCMAKE_PREFIX PATH/bin/macdeployqgt.exe \
. /build/bin/MyApp

Copy the remaining libraries or re-run CMake commands with a
different CMAKE_INSTALL_PREFIX

https://www.youtube.com/watch?v=gnpPosTbttM

The Qt, OpenGL and C++ experts

https://www.youtube.com/watch?v=gnpPosTbttM#watch?v=gnpPosTbttM

I VI

Sighatures pa

Apple requires packages and binaries to be signed

Your binaries, Qt and KDE Frameworks libraries will
all need to be signed as well

Signing is a requirement even if you won't distribute
on the AppStore

You will also need to sign your packages to distribute
on Microsoft's Store

The Qt, OpenGL and C++ experts

Additional resources -

CMake Tutorial. Code Tech Tutorials. (Feb 15, 2023)
https://youtube.com/playlist?list=PLalVdRk2ZRC605GHuU618ARWhOVOO0bFIif4&si=YIIwKOVUZWDFZyk9

“Deploying Qt Applications (Windows|Mac|Linux)”. LearnQtGuide. (Sep 17, 2019).
https://youtube.com/playlist?list=PLQMs5sVASIXNxOUX7tVTncos4j0j9rRa4&si=RdgjxzESKQRF4AHUL

CMake and Qt. KDAB. (Sep 20, 2021)
https://youtube.com/playlist?list=PL6CJYNn40gN6gl_yY2YkqSym7FWUid926M&si=ul6RE2L gjUQyxFra

Getting started with Kirigami. KDE.
https://develop.kde.org/docs/getting-started/kirigami/

KDE’s Human Interface Guidelines. KDE.
https://develop.kde.org/hig/

The KDE Frameworks.
https://api.kde.org/frameworks/index.html

Repos in KDE Frameworks. KDE.
httpS://invent.kde.org/fl‘ameWOI‘kS The Qt, OpenGL ahd C++ experts

https://youtube.com/playlist?list=PLalVdRk2RC6o5GHu618ARWh0VO0bFlif4&si=YlIwK0VUZWDFZyk9#playlist?list=PLalVdRk2RC6o5GHu618ARWh0VO0bFlif4&si=YlIwK0VUZWDFZyk9
https://youtube.com/playlist?list=PLQMs5svASiXNx0UX7tVTncos4j0j9rRa4&si=RdgjxzE5kQRF4HUL#playlist?list=PLQMs5svASiXNx0UX7tVTncos4j0j9rRa4&si=RdgjxzE5kQRF4HUL
https://youtube.com/playlist?list=PL6CJYn40gN6g1_yY2YkqSym7FWUid926M&si=u16RE2LgjUQyxFra#playlist?list=PL6CJYn40gN6g1_yY2YkqSym7FWUid926M&si=u16RE2LgjUQyxFra
https://develop.kde.org/docs/getting-started/kirigami/
https://develop.kde.org/hig/
https://api.kde.org/frameworks/index.html#index
https://invent.kde.org/frameworks#frameworks

Thank you for your time

