
Why and how to
use KDE frameworks
in non-KDE apps
Javier O. Cordero Pérez

● The person who wants to make a Linux app
● The professional in the lookout for cool libraries

Who is this for?

Canonicus Linux programmator
futurum

Peritus fanaticus cōdex elit

Linux Dev Professional

By the end
of this talk

● You’ll have learned about frameworks the
KDE Community has to offer

● You’ll be able to use KDE frameworks
in your own projects

● You’ll have guidance on how to distribute
apps that make use of KDE frameworks

● Javier O. Cordero Pérez (Cuperino)
● Software Engineer at KDAB
● Degrees in:

Computer Science &
Mass Media Communications

● Author of QPrompt Teleprompter app

$ whoami

KDE Frameworks

https://develop.kde.org/products/frameworks

● A collection of add-ons libraries for programming with Qt
● Made primarily to satisfy the needs of the KDE Community

https://develop.kde.org/products/frameworks#frameworks

Let’s see KDE Frameworks
in action!

Insert image here!

● Needs no introduction
● Uses KSyntaxHighlighting
for source code highlighting

Qt Creator

https://www.qt.io/download-qt-installer-oss

https://www.qt.io/download-qt-installer-oss#download-qt-installer-oss

● Divelog app
● Widgets UI for desktop
● Kirigami on iOS and Android
● Goal: Share common C++ backend

Subsurface

Related talk: Desktop to Mobile - Developing for Multiple
Platforms Without Losing Your Mind
https://youtu.be/pa-npvZcm6o?si=OCRUrvit2PZE2NLB

https://youtu.be/pa-npvZcm6o?si=OCRUrvit2PZE2NLB#pa-npvZcm6o?si=OCRUrvit2PZE2NLB

Insert image here!

● Teleprompter app
● Used by professionals and independent
video creators alike

● Made using KCoreAddons, Ki18n,
Kirigami KIconThemes KCrash
BreezeIcons

● Goal: Make a native Linux app

QPrompt

https://qprompt.app

https://qprompt.app/

● Available on GitHub
● Made with KCoreAddons, Ki18n,

Kirigami
● It displays comic book formats

KomicsReader

https://github.com/tubbadu/KomicsReader

https://github.com/tubbadu/KomicsReader#KomicsReader

Insert image here!

● FFXIV launcher for Linux by Joshua Goins
● Supports profiles, multiple accounts, and
plugins

● Made using KCoreAddons, Ki18n, Kirigami
KIconThemes KConfig KArchive

● Goal: Use and expand your skills

Astra

https://xiv.zone/software/astra

https://xiv.zone/software/astra#astra

KDE Frameworks

https://api.kde.org/frameworks/

Divided into tiers:
● Tier 1 – Depend only on Qt, and, sometimes, a small number of

third-party libraries)
• Tier 2 – Additionally depend on tier 1 frameworks
• Tier 3 – Have more complex dependencies
• Tier 4 – “Can be safely ignored by application programmers”

(I’m quoting the website)

https://api.kde.org/frameworks/

KDE Frameworks

https://api.kde.org/frameworks/

“If you ask me...”
● Tier 0

+ Extra CMake Modules
+ A few tiny KDE libraries outside the frameworks list

• Tier 1 – Depend on ECM and sometimes 3rdparty libs
• Tier 2 – Additionally depend on tier 1 frameworks
• Tier 3 – Have more complex dependencies

https://api.kde.org/frameworks/

KDE Frameworks

https://api.kde.org/frameworks/

https://api.kde.org/frameworks/

KDE Frameworks

https://api.kde.org/frameworks/

https://api.kde.org/frameworks/

KDE Frameworks
Tier 1

https://x.com/JCuperino/status/1482379644716425222

https://x.com/JCuperino/status/1482379644716425222#1482379644716425222

KDE Frameworks
Tier 1

KDE Frameworks
Tier 2

KDE Frameworks
Tier 1

KDE Frameworks
Tier 1

KDE Gear

KDE Frameworks
● Pros

● Expand Qt’s functionality
● *Cross platform
● Well documented
● Open governance

● Cons
● Tight integration withKDE’s infrastructure can beinconvenient for non-KDEapps

KDE Frameworks

https://api.kde.org/frameworks

● Pros
● Expand Qt’s functionality
● *Cross platform
● Well documented
● Open governance

● Cons
● Tight integration withKDE’s infrastructure can beinconvenient for non-KDEapps

*iOS support is very limited
*WASM support is presently non-existent

https://api.kde.org/frameworks#frameworks

KDE Frameworks
● Pros

● Expand Qt’s functionality
● *Cross platform
● Well documented
● Open governance
● Free software & opensource

● Cons
● Tight integration with KDE’sinfrastructure can beinconvenient for non-KDEapps
● Strong copyleft licensesrequire consideration

● KDE Frameworks are licensed under
LGPL, BSD, or MIT licenses

● KDE Apps use GPL licenses

https://community.kde.org/Policies/Licensing_Policy

Respecting
the licenses

https://community.kde.org/Policies/Licensing_Policy#Licensing_Policy

00

01

10

11

The freedom to run the program as you wish
for any purpose

The freedom to study how the program works and change it [..]

The freedom to redistribute copies so you can help others [..]

The freedom to distribute copies of your modified versions to others
[..] give the whole community a chance to benefit from your changes.

.

The four essential freedoms
https://www.gnu.org/philosophy/free-sw.en.html

https://www.gnu.org/philosophy/free-sw.en.html#free-sw.en

They do this by requiring that you distribute the source
code for changes in derivative works

Under the LGPL non-GPL family programs can be distributed
under any terms if they’re not derivative works

For a program not to be considered derivative certain
requirements must be met

Also commercial use is allowed

GPL family licenses not only give freedoms they
also help defend them

4. Combined Works (LGPL-3)You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of theportions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you alsodo each of the following:
a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its useare covered by this License.
b) Accompany the Combined Work with a copy of the GNU GPL and this license document.
c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library amongthese notices, as well as a reference directing the user to the copies of the GNU GPL and this license document.
d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding ApplicationCode in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a modified versionof the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL forconveying Corresponding Source.
1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses atrun time a copy of the Library already present on the user's computer system, and (b) will operate properly with a modifiedversion of the Library that is interface-compatible with the Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 ofthe GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of theCombined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you useoption 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding ApplicationCode. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPLfor conveying Corresponding Source.)

4. Combined Works (LGPL-3)
You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of theportions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you alsodo each of the following:

a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its useare covered by this License.
b) Accompany the Combined Work with a copy of the GNU GPL and this license document.
c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Libraryamong these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document.
d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License, and the CorrespondingApplication Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with amodified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNUGPL for conveying Corresponding Source.
→ 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a)uses at run time a copy of the Library already present on the user's computer system, and (b) will operate properly with amodified version of the Library that is interface-compatible with the Linked Version.

e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of theCombined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you useoption 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding ApplicationCode. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPLfor conveying Corresponding Source.)

How to make use of
KDE Frameworks

Prepare your development
environment

Prepare your developer
distribution environment

Build it
yourself

Distribution’s
packages

KDE’s CraftKDE Builder
or

kdesrc-build

● How libraries are installed for development
is be closely tied to how the app is packaged for distribution

Prepare your
distribution environment

Build it
yourself

Distribution’s
packages

KDE’s CraftKDE Builder
or

kdesrc-build

Beginner
friendly

Covers the most
platforms,
requires

most mastery

Linux only
The KDE way
Unsuitable for
3rd parties

Windows
MacOS
AppImage
*Android

KDE Craft
● Pros

● Robust packaging systembuilt with Python
● You can use it to buildWindows, Mac, AppImage,FreeBSD
● Easier than packaging appsyourself

● Cons
● Constantly changing,hard to keep up
● Old versions of KDEframeworks are removed
● Android build scripts aretied to KDE’s CI, which isonly for KDE Projects

https://community.kde.org/Craft

https://community.kde.org/Craft#Craft

Distribution’s packages
● Pros

● Easy to get started...Install the copy of the library listedwith a -dev or -devel suffixE.g.libkf5solid-dev (Ubuntu)kf6-solid-devel (Fedora)
● Easier to make packages
● Simply list your dependencies

● Cons
● Distributions update thesepackages sporadically

E.g.Ubuntu 24.04 ships v5.115.0 ofKDE frameworks, which isdeprecated (using KDE Neonwhile targeting Debian isrecommended)

https://develop.kde.org/docs/getting-started/building/cmake-build

https://develop.kde.org/docs/getting-started/building/cmake-build#cmake-build

● Similar to traditional Linux packages
● Instead of installing additional packages, you link against a Runtime and SDK that bringsall KDE Frameworks

● For Flatpak, use:"runtime": "org.kde.Platform","runtime-version": "6.7”, // Replace version number with the most current one"sdk": "org.kde.Sdk",Learn more at: https://develop.kde.org/docs/packaging/flatpak/packaging/
● For Snaps, use the latest variants of:https://snapcraft.io/kf6-core22https://snapcraft.io/kf6-core22-sdk

● Learn more at: https://ubuntu.com/tutorials/create-your-first-snap#1-overview

Universal Packages

https://develop.kde.org/docs/packaging/flatpak/packaging/
https://snapcraft.io/kf6-core22#kf6-core22
https://snapcraft.io/kf6-core22-sdk#kf6-core22-sdk
https://ubuntu.com/tutorials/create-your-first-snap#1-overview#create-your-first-snap#1-overview

Build it yourself
● Pros

● Develop at your own pace
● Develop for architectures thatare unsupported by KDE, likeRISC-V and ARM64 Windows
● Distribute on platforms that arelimited by KDE’s currentinfrastructure, such as Androidand WASM

● Cons
● For each platform you deploy

● You build all librariesmanually
● You install all librariesmanually
● You create packages orinstallers manually

● Build system for C++ code
● It abstracts compilers, packaging tools, and
other tools for build and distribution.

● CMake Generators will produce code
suitable for building projects with vastly
different compilers

CMake

https://cmake.org

https://cmake.org#cmake

Making use of KDE Frameworks
set(KF_MIN_VERSION 6.2.0) # Set to match the oldest supported distro
find_package(ECM REQUIRED NO_MODULE)
find_package(KF6 ${KF_MIN_VERSION} REQUIRED COMPONENTS

CoreAddons
)
target_link_libraries(${PROJECT_NAME} PRIVATE

KF6::CoreAddons
)

● Although other methods for locating libraries in CMake exists,find_package is recommended because it’s what KDE frameworksthemselves use
● All the libraries depend on ECM so,at the very least, ECM must be installed
● If you are able to install ECM, you should be able to install the otherlibraries
● Due to hard coded values the KDE frameworks often don’t compile ifyou add via add_subdirectory
● ExternalProject_Add might not work in CI environments withoutnetwork access (Flatpak CI)

Making use of KDE Frameworks

https://cmake.org/cmake/help/latest/command/find_package.html#find_package
https://cmake.org/cmake/help/latest/command/add_subdirectory.html#add_subdirectory
https://cmake.org/cmake/help/latest/module/ExternalProject.html#ExternalProject

ECM
Extra CMake Modules

● Set of build scripts for CMake
● Ease building and distributing
● Required for building all KDE
Frameworks

Extra CMake Modules

CMakeLists.txt
set(KF_MIN_VERSION 6.2.0) # Set to match the oldest supported distro

find_package(ECM REQUIRED NO_MODULE)

find_package(KF6 ${KF_MIN_VERSION} REQUIRED COMPONENTS

CoreAddons)

target_link_libraries(${PROJECT_NAME} PRIVATE

KF6::CoreAddons)

Install paths for Linux metadata
• # The following KDE_… variables are provided by ECM:
install(FILES myapp.appdata.xml DESTINATION ${KDE_INSTALL_METAINFODIR}
install(PROGRAMS myapp.desktop DESTINATION ${KDE_INSTALL_APPDIR})

Set icons for app binary & installers
set(ICONS_FOLDER ${CMAKE_CURRENT_SOURCE_DIR}/icons/hicolor)

set(RASTER_ICONS

${ICONS_FOLDER}/16-apps-com.publisher.myapp.png

[..] # Add icons from 16px to 512px.
ECM supports higher sizes but Flatpak does not.

${ICONS_FOLDER}/512-apps-com.publisher.myapp.png

set(VECTOR_ICON ${ICONS_FOLDER}/sc-apps-com.publisher.myapp.svg)

ecm_install_icons(

ICONS ${RASTER_ICONS} ${VECTOR_ICON}

DESTINATION ${KDE_INSTALL_ICONDIR})

ecm_add_app_icon(myapp_ICONS ICONS ${RASTER_ICONS})

add_executable(${PROJECT_NAME} [..] ${myapp_ICONS})

Matching app version everywhere
In CMake
project(myapp VERSION 1.0.0)
ecm_setup_version(${PROJECT_VERSION}

VARIABLE_PREFIX MYAPP
VERSION_HEADER "${CMAKE_CURRENT_BINARY_DIR}/myapp_version.h")

// In C++
#include "myapp_version.h"
MYAPP_VERSION_STRING

● Set of build scripts for CMake
● Ease building and distributing
● Required for building all KDE
Frameworks

Build
it
yourself

Build dependencies
● All platforms

● Git
● Bash
● Python 3

● In MacOS, also run:
● xcode-select –install

● In Ubuntu, you can use:
sudo apt install python3 python3-pip python3-venv build-essential git wget

Manually build and installKDE Frameworks
From a framework’s root folder
mkdir build # create make a build folder

Set the kinds of builds you want to create
CMAKE_CONFIGURATION_TYPES="Debug;Release;RelWithDebInfo;MinSizeRel"

Set the build type that will be used to make a release
CMAKE_BUILD_TYPE="Release"

CMAKE_PREFIX_PATH is the folder from which CMake searches for libraries
Set it to point towards your Qt installation.
CMAKE_PREFIX_PATH="~/Qt/6.7.2/gcc/"

CMAKE_INSTALL_PREFIX is the folder where CMake install() instructions will
copy files to. We’ll install KF alongside Qt.
CMAKE_INSTALL_PREFIX=$CMAKE_PREFIX_PATH

Manually build and installKDE Frameworks
Run cmake for preparations

cmake -DCMAKE_CONFIGURATION_TYPES=$CMAKE_CONFIGURATION_TYPES \

-DBUILD_TESTING=OFF \

-BUILD_QCH=OFF \

-DCMAKE_PREFIX_PATH=$CMAKE_PREFIX_PATH \

-DCMAKE_INSTALL_PREFIX=$CMAKE_INSTALL_PREFIX \

-B ./build .

Build the project with previous configuration

cmake --build ./build --config $CMAKE_BUILD_TYPE

Install the library to CMAKE_INSTALL_PREFIX

cmake --install ./build

A script to automatically build andinstall your libraries 1/8
● Bash can serve as a minimum common denominator across platforms.

● It’s shipped in GNU/Linux, MacOS, and is installed alongside Git onWindows through an MSYS environment
● Acquire your dependencies by downloading the repos as git submodules

git submodule add $PATH_TO_GIT_REPO

● git submodule add https://github.com/KDE/kcoreaddons.git

● git submodule add https://invent.kde.org/frameworks/kcoreaddons.git

https://github.com/KDE/kcoreaddons.git#kcoreaddons
https://invent.kde.org/frameworks/kcoreaddons.git#kcoreaddons

A script to automatically build andinstall your libraries 2/8
if [["$OSTYPE" == "linux-gnu"*]]; then

PLATFORM="linux"
COMPILER="gcc"

elif [["$OSTYPE" == "darwin"*]]; then
PLATFORM="macos"
COMPILER="macos"

elif [["$OSTYPE" == "win32" || "$OSTYPE" == "msys"]]; then
PLATFORM="windows"
COMPILER="msvc2019_64"

elif [["$OSTYPE" == "freebsd"*]]; then
PLATFORM="freebsd"
COMPILER="gcc"

else
PLATFORM="unix"
COMPILER="gcc"

fi

A script to automatically build andinstall your libraries 3/8
Update submodules
echo "Downloading git submodules"
git submodule update --init --recursive

A script to automatically build andinstall your libraries 4/8
Satisfy KDE’s Python dependencies
python3 -m venv venv

if [["$PLATFORM" == "windows"]]; then
source venv/Scripts/activate

else
source venv/bin/activate

fi
python -m pip install --upgrade pip

python -m pip install -r requirements.txt

The following goes in
requirements.txt and is
needed to make Release
builds:

sphinx
reuse

● Can satisfy most of KDE’s 3rdpatry
dependencies

● Using “Classic mode” libraries are built to a
central folder. We then copy them to our
prefix

● Why not use VCPKG for installing
KDE Frameworks?

VCPKG

https://vcpkg.io/en/packages

https://vcpkg.io/en/packages#packages

Add VCPKG as a git submodule
mkdir -p 3rdparty
cd 3rdparty
git add submodule https://github.com/microsoft/vcpkg.git

Initialize VCPKG
● run: vcpkg new --applicationIt will generate a vcpkg-configuration.json file like follows:

{
"default-registry":
{

"kind": "git"J
"baseline": "509f71e53f45e46c13fa7935d2f6a45803580c07"J
"repository": "https://github.com/microsoft/vcpkg"

}J
"registries": [
{
"kind": "artifact"J
"location": "https://github.com/microsoft/vcpkg-ce-catalog/archive/refs/heads/main.zip"J
"name": "microsoft"

}
]

}

A script to automatically build andinstall your libraries 5/8
Setup VCPKG
./3rdparty/vcpkg/bootstrap-vcpkg.sh -disableMetrics
if [["$PLATFORM" == "windows"]]; then

VCPKG=./3rdparty/vcpkg/vcpkg.exe
else

VCPKG=./3rdparty/vcpkg/vcpkg
fi
Install VCPKG packages
$VCPKG install --x-install-root "$CMAKE_PREFIX_PATH" package names go here
Copy installed packages into install prefix
for package in ./3rdparty/vcpkg/packages/*; do

echo $package
cp -rf $package/* $CMAKE_PREFIX_PATH

done

A script to automatically build andinstall your libraries 6/8
KDE Frameworks
tier_0="

./3rdparty/extra-cmake-modules"
tier_1="

./3rdparty/kcoreaddons

./3rdparty/ki18n

./3rdparty/kirigami"
tier_2=""
tier_3=""

A script to automatically build andinstall your libraries 7/8
CMAKE_CONFIGURATION_TYPES="Debug;Release;RelWithDebInfo;MinSizeRel"
CMAKE_BUILD_TYPE="Release"

for dependency in $tier_0 $tier_1 $tier_2 $tier_3; do
echo -e "\n\n~~~" $dependency "~~~\n"
cmake -DCMAKE_CONFIGURATION_TYPES=$CMAKE_CONFIGURATION_TYPES \

-DBUILD_TESTING=OFF \
-BUILD_QCH=OFF \
-DCMAKE_PREFIX_PATH=$CMAKE_PREFIX_PATH \
-DCMAKE_INSTALL_PREFIX=$CMAKE_INSTALL_PREFIX \

-B ./$dependency/build ./$dependency/
cmake --build ./$dependency/build --config $CMAKE_BUILD_TYPE

cmake --install ./$dependency/build
done

A script to automatically build andinstall your libraries 8/8
echo "MyApp"
cmake -DCMAKE_CONFIGURATION_TYPES=$CMAKE_CONFIGURATION_TYPES

-DCMAKE_PREFIX_PATH=$CMAKE_PREFIX_PATH
-DCMAKE_INSTALL_PREFIX=$CMAKE_INSTALL_PREFIX
-B ./build .

cmake --build build --config $CMAKE_BUILD_TYPE

• Part of CMake
• Abstracts various packaging tools
• Can be used to make:

• Deb & RPM packages
• NSIS installers for Windows
• Drag-and-Drop and PackageMaker
installers for macOS

CPack

https://cmake.org/cmake/help/book/mastering-cmake/chapter/Packaging%20With%20CPack.html

https://cmake.org/cmake/help/book/mastering-cmake/chapter/Packaging With CPack.html#Packaging With CPack

Using CPack to make builds
cd build
cpack

Example CPack code in CMakeLists.txt

Example CPack code in CMakeLists.txt

Example CPack code in CMakeLists.txt

Example CPack code in CMakeLists.txt

Example CPack code in CMakeLists.txt

Include

Not include

Depending on the platform you’ll target is whether you will need
to include the libraries packaged alongside your program

To include (libraries)
or not to include?

● For Windows, MacOS and other
OS without a traditional package
manager

● For AppImages

● For traditional Linux package
managers

● For Snap and Flatpak universal
package formats

Include Not include

Tools to aggregate libraries
● windeployqt

● macployqt

$CMAKE_PREFIX_PATH/bin/windeployqt.exe \

./build/bin/$CMAKE_BUILD_TYPE/MyApp.exe

$CMAKE_PREFIX_PATH/bin/macdeployqt.exe \

./build/bin/MyApp

Copy the remaining libraries or re-run CMake commands with a
different CMAKE_INSTALL_PREFIX

https://www.youtube.com/watch?v=gnpPosTbttM

https://www.youtube.com/watch?v=gnpPosTbttM#watch?v=gnpPosTbttM

● Apple requires packages and binaries to be signed
● Your binaries, Qt and KDE Frameworks libraries will
all need to be signed as well

● Signing is a requirement even if you won’t distribute
on the AppStore

● You will also need to sign your packages to distribute
on Microsoft’s Store

Signatures

Additional resources
● CMake Tutorial. Code Tech Tutorials. (Feb 15, 2023)https://youtube.com/playlist?list=PLalVdRk2RC6o5GHu618ARWh0VO0bFlif4&si=YlIwK0VUZWDFZyk9
● “Deploying Qt Applications (Windows|Mac|Linux)”. LearnQtGuide. (Sep 17, 2019).https://youtube.com/playlist?list=PLQMs5svASiXNx0UX7tVTncos4j0j9rRa4&si=RdgjxzE5kQRF4HUL
● CMake and Qt. KDAB. (Sep 20, 2021)https://youtube.com/playlist?list=PL6CJYn40gN6g1_yY2YkqSym7FWUid926M&si=u16RE2LgjUQyxFra
● Getting started with Kirigami. KDE.https://develop.kde.org/docs/getting-started/kirigami/
● KDE’s Human Interface Guidelines. KDE.https://develop.kde.org/hig/
● The KDE Frameworks.https://api.kde.org/frameworks/index.html
● Repos in KDE Frameworks. KDE.https://invent.kde.org/frameworks

https://youtube.com/playlist?list=PLalVdRk2RC6o5GHu618ARWh0VO0bFlif4&si=YlIwK0VUZWDFZyk9#playlist?list=PLalVdRk2RC6o5GHu618ARWh0VO0bFlif4&si=YlIwK0VUZWDFZyk9
https://youtube.com/playlist?list=PLQMs5svASiXNx0UX7tVTncos4j0j9rRa4&si=RdgjxzE5kQRF4HUL#playlist?list=PLQMs5svASiXNx0UX7tVTncos4j0j9rRa4&si=RdgjxzE5kQRF4HUL
https://youtube.com/playlist?list=PL6CJYn40gN6g1_yY2YkqSym7FWUid926M&si=u16RE2LgjUQyxFra#playlist?list=PL6CJYn40gN6g1_yY2YkqSym7FWUid926M&si=u16RE2LgjUQyxFra
https://develop.kde.org/docs/getting-started/kirigami/
https://develop.kde.org/hig/
https://api.kde.org/frameworks/index.html#index
https://invent.kde.org/frameworks#frameworks

Thank you for your time

