

KDE’s CI and CD
Infrastructure
Ben Cooksley
Hannah von Reth
Julius Künzel
Volker Krause

● Every repository should have this!
● Compiles and tests your code on every change made
● Done in a reproducible, clean environment
● Not limited to C++ code:

● JSON/XML/Yaml validators
● Python linter
● REUSE license validator

Continuous Integration

● Configured using a .gitlab-ci.yml file at the top level of
your repository
● Where possible include existing templates rather

than rolling your own
● If you do need to do something special though you

can create a custom job

● Currently supports building:
● Linux/glibc and Linux/musl
● FreeBSD
● Windows
● Android

Setting up CI

● Managed in two different ways depending on whether it is another KDE

project (internal) or not (external)

● List internal dependencies in .kde-ci.yml

● External dependencies are provided by CI images:
● For Linux/FreeBSD: uses system packages
● For Windows/Android: uses Craft

● Bulk rebuilds of dependencies are done using seed jobs

Project Dependencies

● Handled using a .kde-ci.yml file in your repository if you
are using the standard CI templates

● Provides lots of different options to allow customising
workflows:
● Mandatory passing tests
● Custom build options

● If you need more, see sysadmin/ci-utilities for the
default settings and the scripts driving this

Configuring CI Jobs

● Every application should have this!
● Builds fully functional application packages

● Supports Linux, Windows, Android, macOS
● Signing, store submission

● Set up: include template in .gitlab-ci.yml
● Signing/publishing needs to be enabled in sysadmin/ci-utilities > signing

Continuous Delivery

● Driven by Appstream files in each repository

● Automatically used for:
● apps.kde.org
● Flathub
● Google (Play), F-Droid and Microsoft Store

information

CD: Application Metadata

● Drives builds for everything but Flatpak/Snap
● Basically a distro supporting Windows, Linux and macOS

● Prebuild cache
● Release with debug info

● Each app and each dependency needs a Craft blueprint: packaging/craft-blueprints-kde
● Describes building and packaging
● No changes to the CMakeLists.txt needed
● Full deployment, not just the app

● Customize via .craft.ini and .craftignore
● Never set the version for KDE frameworks

● Resulting CD artifacts must be released

CD: Craft

● Runs on all *recent- versions of Linux (libc)
● Simple to create and use
● Usually contains everything the app needs but system

libs

CD: Linux Appimage

● Windows Store (opt in)
● Releases are automatically prepared
● Release is done by a maintainer
● Sideload version for testing *-sideload.appx

● NSIS
● Classic Windows installer *.exe

● Portable archive
● Plain archive, runable everywhere *.7z

● Only releases are signed

CD: Windows

● Builds APK and AAB packages
● On master and release branches automatically signed

and uploaded to KDE’s F-Droid stable and “nightly”

repositories
● Upload to Google Play is also available, publishing

needs manual steps still though

CD: Android

● Two architectures: ARM and x86_64
● Builds DMG bundles
● Needs a plist file (can be generated by CMake)
● Notarization for better user experience

CD: macOS

● Manifest file in each repo: .flatpak-manifest.json
● Only for nightlies! (stable manifest are on

github.com/flathub)
● Describes building the app and all dependencies on top

of KDE Frameworks
● Result installable by opening flatpakref from

https://cdn.kde.org/flatpak/ with Discover etc.

CD: Flatpak

● See Kévin’s talk later today in Room 1

CD: Snap

● The CD side is also capable of many other things including:
● Publishing packages to PyPi
● Deploying websites to KDE.org infrastructure

● While on the CI side we can take energy consumption

measurements
● Separate BoF for this - Monday 10:00 Room 2

Other things

● GUI tests on Windows, unit tests on Android
● Automated testing of CD packages
● Status overview/dashboard
● Publishing to Flathub

Wishlist & Outlook

● CI/CD got a lot more accessible for everyone with the move from

Jenkins to Gitlab

● Most things can be done via an MR or even in your own

repository directly!

● BoF: Tuesday 15:00 Room 3

Conclusion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

