
The Road to KDE Neon Core
Gosh! We’re surrounded by Snaps everywhere!

Kevin Ottens

The Road to KDE Neon Core 2|

whoami

• Started to use KDE with 1.0-beta1 in 1997
• Procrastinated until 2003 to finally contribute code
• Fell in love with the community back then
• Kept doing things here and there. . . most notably helped with:

– kdelibs
– KDE Frameworks architecture
– the KDE Manifesto
– Community Data Analytics

• Part of the enioka Haute Couture family
• Living in Toulouse

The Road to KDE Neon Core 3|

Introduction

The Road to KDE Neon Core 4|

Ubuntu Core

Ubuntu Core is a minimal, secure and strictly confined operating system

• Designed for embedded systems
• Immutable version of Ubuntu
• Secure by design, containerised
• All the components are in snaps, even the kernel and the snap daemon (snapd)
• OTA updates with automated rollback if needed

The Road to KDE Neon Core 5|

Ubuntu Core Desktop

A fully containerised desktop, where each component is immutable and isolated

• Announced last year
• Full desktop session on top of Ubuntu Core
• Same benefits, but for user facing GUIs

– security: harder for malicious software to change the system or spread themselves
– stability: updates can’t leave the system in an unstable state
– reproducibility: easier to audit and verify the system
– manageability: no inconsistencies from system to system

• Comes with extra challenges
– Harder to draw the boundaries between desktop components
– Quite some storage used

The Road to KDE Neon Core 5|

Ubuntu Core Desktop

A fully containerised desktop, where each component is immutable and isolated

• Announced last year
• Full desktop session on top of Ubuntu Core
• Same benefits, but for user facing GUIs

– security: harder for malicious software to change the system or spread themselves
– stability: updates can’t leave the system in an unstable state
– reproducibility: easier to audit and verify the system
– manageability: no inconsistencies from system to system

• Comes with extra challenges
– Harder to draw the boundaries between desktop components
– Quite some storage used

The Road to KDE Neon Core 5|

Ubuntu Core Desktop

A fully containerised desktop, where each component is immutable and isolated

• Announced last year
• Full desktop session on top of Ubuntu Core
• Same benefits, but for user facing GUIs

– security: harder for malicious software to change the system or spread themselves
– stability: updates can’t leave the system in an unstable state
– reproducibility: easier to audit and verify the system
– manageability: no inconsistencies from system to system

• Comes with extra challenges
– Harder to draw the boundaries between desktop components
– Quite some storage used

The Road to KDE Neon Core 6|

KDE Neon Core

All the KDE Neon benefits on top of Ubuntu Core

• Follows a similar architecture to Ubuntu Core Desktop
• Plasma based user experience
• Greatest and latest KDE software
• Also provides building blocks to snap package KDE applications for use out of

Ubuntu Core

The Road to KDE Neon Core 7|

Snap Confinement Basics

The Road to KDE Neon Core 8|

Making a Snap

• Requires a build recipe (snapcraft.yaml)
• snapcraft will build the package
• Recipe structure

– Metadata
– Targeted base system
– Apps provided in the package
– Interfaces (slots and plugs)
– Packages needed for building
– How to build each part

The Road to KDE Neon Core 8|

Making a Snap

• Requires a build recipe (snapcraft.yaml)
• snapcraft will build the package
• Recipe structure

– Metadata
– Targeted base system
– Apps provided in the package
– Interfaces (slots and plugs)
– Packages needed for building
– How to build each part

The Road to KDE Neon Core 9|

Making a Snap cont’d
Recipe extract

name: ark
confinement: strict
grade: stable
base: core22
adopt-info: ark
apps:

ark:
extensions:

- kde-neon-6 # <= forces settings useful for all KDE applications
common-id: org.kde.ark.desktop
desktop: usr/share/applications/org.kde.ark.desktop
command: usr/bin/ark
plugs:

- home
- system-backup

slots:
session-dbus-interface:

interface: dbus
name: org.kde.ark
bus: session

[...]

The Road to KDE Neon Core 10|

Making a Snap cont’d
What’s in the kde-neon-6 extension?

• Ensures the right environment at application start ($PATH, $XDG_*, etc.)
• Declares build time and runtime dependencies on KDE Frameworks and Qt
• Declares common plugs, in particular

– desktop
– opengl
– wayland
– x11
– audio-playback

The Road to KDE Neon Core 11|

How Does It Work?

• When an application is launched the following happens
– snap-confine sets up the execution environment

- $HOME, $SNAP and $SNAP_* environment variables are set
- a private mount namespace is set
- a private /tmp directory is set
- command specific seccomp filter is put in place
- command specific apparmor profile is put in place
- hand over to snap-exec started in this new execution environment

– snap-exec reads meta.yaml and launches the correct command

• Applications can also be declared as daemons
– This leads to a systemd service which simply does a snap run

• Where are the seccomp filters and apparmor profiles coming from?
– snapd creates them when packages are installed/removed
– snapd updates them when interfaces are connected/disconnected

• Corollary: snapd has code mapping interface states to seccomp and apparmor
templates

The Road to KDE Neon Core 11|

How Does It Work?

• When an application is launched the following happens
– snap-confine sets up the execution environment

- $HOME, $SNAP and $SNAP_* environment variables are set
- a private mount namespace is set
- a private /tmp directory is set
- command specific seccomp filter is put in place
- command specific apparmor profile is put in place
- hand over to snap-exec started in this new execution environment

– snap-exec reads meta.yaml and launches the correct command

• Applications can also be declared as daemons
– This leads to a systemd service which simply does a snap run

• Where are the seccomp filters and apparmor profiles coming from?
– snapd creates them when packages are installed/removed
– snapd updates them when interfaces are connected/disconnected

• Corollary: snapd has code mapping interface states to seccomp and apparmor
templates

The Road to KDE Neon Core 11|

How Does It Work?

• When an application is launched the following happens
– snap-confine sets up the execution environment

- $HOME, $SNAP and $SNAP_* environment variables are set
- a private mount namespace is set
- a private /tmp directory is set
- command specific seccomp filter is put in place
- command specific apparmor profile is put in place
- hand over to snap-exec started in this new execution environment

– snap-exec reads meta.yaml and launches the correct command

• Applications can also be declared as daemons
– This leads to a systemd service which simply does a snap run

• Where are the seccomp filters and apparmor profiles coming from?
– snapd creates them when packages are installed/removed
– snapd updates them when interfaces are connected/disconnected

• Corollary: snapd has code mapping interface states to seccomp and apparmor
templates

The Road to KDE Neon Core 11|

How Does It Work?

• When an application is launched the following happens
– snap-confine sets up the execution environment

- $HOME, $SNAP and $SNAP_* environment variables are set
- a private mount namespace is set
- a private /tmp directory is set
- command specific seccomp filter is put in place
- command specific apparmor profile is put in place
- hand over to snap-exec started in this new execution environment

– snap-exec reads meta.yaml and launches the correct command

• Applications can also be declared as daemons
– This leads to a systemd service which simply does a snap run

• Where are the seccomp filters and apparmor profiles coming from?
– snapd creates them when packages are installed/removed
– snapd updates them when interfaces are connected/disconnected

• Corollary: snapd has code mapping interface states to seccomp and apparmor
templates

The Road to KDE Neon Core 12|

KDE Neon Core Architecture

The Road to KDE Neon Core 13|

The Important Parts

pc-plasma-desktop

(gadget snap)

plasma-core22-desktop

(base snap)

plasma-desktop-session

(application snap)

ubuntu-core-desktop-init

(application snap)

pc-kernel

(kernel snap)

snapd

(snapd snap)

firefox

(application snap)

okular

(application snap)

kwrite

(application snap)

elisa

(application snap)

kf6-core22

(content snap)

network-manager

(application snap)

cups

(application snap)

avahi

(application snap)

bluez

(application snap)

lxd

(application snap)

...

(application snap)

• plasma-core22-desktop is populated with KDE Neon debian packages
• application and content snaps are populated by building from the code

The Road to KDE Neon Core 14|

First Boot Provisioning

• SDDM is provided by plasma-core22-desktop
• It is ran outside of confinement
• On first boot

– No regular user is available
– SDDM config is overloaded to auto-login as root in a special session
– It only starts the ubuntu-core-desktop-init wizard

• Once a user is provisioned (thanks to the wizard)
– SDDM config is reset to defaults

• Interestingly GDM requires no extra work for this
• The first run and provisioning feature is built in

The Road to KDE Neon Core 14|

First Boot Provisioning

• SDDM is provided by plasma-core22-desktop
• It is ran outside of confinement
• On first boot

– No regular user is available
– SDDM config is overloaded to auto-login as root in a special session
– It only starts the ubuntu-core-desktop-init wizard

• Once a user is provisioned (thanks to the wizard)
– SDDM config is reset to defaults

• Interestingly GDM requires no extra work for this
• The first run and provisioning feature is built in

The Road to KDE Neon Core 14|

First Boot Provisioning

• SDDM is provided by plasma-core22-desktop
• It is ran outside of confinement
• On first boot

– No regular user is available
– SDDM config is overloaded to auto-login as root in a special session
– It only starts the ubuntu-core-desktop-init wizard

• Once a user is provisioned (thanks to the wizard)
– SDDM config is reset to defaults

• Interestingly GDM requires no extra work for this
• The first run and provisioning feature is built in

The Road to KDE Neon Core 14|

First Boot Provisioning

• SDDM is provided by plasma-core22-desktop
• It is ran outside of confinement
• On first boot

– No regular user is available
– SDDM config is overloaded to auto-login as root in a special session
– It only starts the ubuntu-core-desktop-init wizard

• Once a user is provisioned (thanks to the wizard)
– SDDM config is reset to defaults

• Interestingly GDM requires no extra work for this
• The first run and provisioning feature is built in

The Road to KDE Neon Core 15|

Starting Plasma
systemd driven

workspace-wayland target

workspace target core target

kwin_wayland
(talks to systemd) ksplash

kcminit ksmserver
(talks to systemd)

plasmashell kded6 kcminit-phase1
(qdbus)

xdg-desktop-
portal-kde

ksplash-ready
(qdbus)

restoresession
(qdbus)

powerdevil

startplasma
(talks to systemd)

starts

Warning: This graph is overly simplified and lying on purpose

• startplasma basically requests a single target and kickstarts the process
• systemd environment is manipulated by startplasma, kwin and ksmserver

The Road to KDE Neon Core 16|

Unconfined Startup

• Should be easy right?
• We declared startplasma and xdg-desktop-portal-kde as applications
• And yet. . . we would get a black screen!
• A deadlock between kwin_wayland and xdg-desktop-portal-kde
• With kwin_wayland stuck nothing could proceed
• But why the deadlock in the first place?
• Remember the $SNAP environment variable?
• Turns out that if set, QGuiApplication loads the xdgdesktopportal platform

theme (among other things)
• This creates interesting runtime dependencies:

– kwin_wayland → xdgdesktopportal → xdg-desktop-portal-kde →
kwin_wayland

– xdg-desktop-portal-kde → xdgdesktopportal → xdg-desktop-portal-kde

The Road to KDE Neon Core 16|

Unconfined Startup

• Should be easy right?
• We declared startplasma and xdg-desktop-portal-kde as applications
• And yet. . . we would get a black screen!
• A deadlock between kwin_wayland and xdg-desktop-portal-kde
• With kwin_wayland stuck nothing could proceed
• But why the deadlock in the first place?
• Remember the $SNAP environment variable?
• Turns out that if set, QGuiApplication loads the xdgdesktopportal platform

theme (among other things)
• This creates interesting runtime dependencies:

– kwin_wayland → xdgdesktopportal → xdg-desktop-portal-kde →
kwin_wayland

– xdg-desktop-portal-kde → xdgdesktopportal → xdg-desktop-portal-kde

The Road to KDE Neon Core 16|

Unconfined Startup

• Should be easy right?
• We declared startplasma and xdg-desktop-portal-kde as applications
• And yet. . . we would get a black screen!
• A deadlock between kwin_wayland and xdg-desktop-portal-kde
• With kwin_wayland stuck nothing could proceed
• But why the deadlock in the first place?
• Remember the $SNAP environment variable?
• Turns out that if set, QGuiApplication loads the xdgdesktopportal platform

theme (among other things)
• This creates interesting runtime dependencies:

– kwin_wayland → xdgdesktopportal → xdg-desktop-portal-kde →
kwin_wayland

– xdg-desktop-portal-kde → xdgdesktopportal → xdg-desktop-portal-kde

The Road to KDE Neon Core 16|

Unconfined Startup

• Should be easy right?
• We declared startplasma and xdg-desktop-portal-kde as applications
• And yet. . . we would get a black screen!
• A deadlock between kwin_wayland and xdg-desktop-portal-kde
• With kwin_wayland stuck nothing could proceed
• But why the deadlock in the first place?
• Remember the $SNAP environment variable?
• Turns out that if set, QGuiApplication loads the xdgdesktopportal platform

theme (among other things)
• This creates interesting runtime dependencies:

– kwin_wayland → xdgdesktopportal → xdg-desktop-portal-kde →
kwin_wayland

– xdg-desktop-portal-kde → xdgdesktopportal → xdg-desktop-portal-kde

The Road to KDE Neon Core 17|

Unconfined Startup cont’d

• This variable was inherited from startplasma due to the way it pushes its
environment to systemd via UpdateActivationEnvironment

• Several ways to reduce or avoid the issue
– Remove the xdgdesktopportal platform theme from the base snap (not perfect due

to other side-effects)
– Add a oneshot systemd service executed before kwin to cleanup the systemd

environment
– Modify startplasma to not push confinement related environment variables to

systemd

• This got us a working desktop in all its glory!
• It was still unconfined though. . .

The Road to KDE Neon Core 17|

Unconfined Startup cont’d

• This variable was inherited from startplasma due to the way it pushes its
environment to systemd via UpdateActivationEnvironment

• Several ways to reduce or avoid the issue
– Remove the xdgdesktopportal platform theme from the base snap (not perfect due

to other side-effects)
– Add a oneshot systemd service executed before kwin to cleanup the systemd

environment
– Modify startplasma to not push confinement related environment variables to

systemd

• This got us a working desktop in all its glory!
• It was still unconfined though. . .

The Road to KDE Neon Core 17|

Unconfined Startup cont’d

• This variable was inherited from startplasma due to the way it pushes its
environment to systemd via UpdateActivationEnvironment

• Several ways to reduce or avoid the issue
– Remove the xdgdesktopportal platform theme from the base snap (not perfect due

to other side-effects)
– Add a oneshot systemd service executed before kwin to cleanup the systemd

environment
– Modify startplasma to not push confinement related environment variables to

systemd

• This got us a working desktop in all its glory!
• It was still unconfined though. . .

The Road to KDE Neon Core 18|

Opening The Snapd Interfaces Pandora Box

• Now that we want to confine the session things will break badly again
• Confined processes aren’t allowed to call StartUnit or

UpdateActivationEnvironment on the user systemd. . .
• Time to get the power drill out!
• We submitted a new systemd-user-control interface
• The AppArmor profile of an application is changed when having it as plug
• StartUnit and UpdateActivationEnvironment become allowed
• This is risky as it allows the application to talk to systemd directly
• A good way to start applications unconfined
• Snap packages using it would need very fine review, not many are to be trusted

with it
• As a matter of fact this is still in discussion due to this. . .

The Road to KDE Neon Core 18|

Opening The Snapd Interfaces Pandora Box

• Now that we want to confine the session things will break badly again
• Confined processes aren’t allowed to call StartUnit or

UpdateActivationEnvironment on the user systemd. . .
• Time to get the power drill out!
• We submitted a new systemd-user-control interface
• The AppArmor profile of an application is changed when having it as plug
• StartUnit and UpdateActivationEnvironment become allowed
• This is risky as it allows the application to talk to systemd directly
• A good way to start applications unconfined
• Snap packages using it would need very fine review, not many are to be trusted

with it
• As a matter of fact this is still in discussion due to this. . .

The Road to KDE Neon Core 18|

Opening The Snapd Interfaces Pandora Box

• Now that we want to confine the session things will break badly again
• Confined processes aren’t allowed to call StartUnit or

UpdateActivationEnvironment on the user systemd. . .
• Time to get the power drill out!
• We submitted a new systemd-user-control interface
• The AppArmor profile of an application is changed when having it as plug
• StartUnit and UpdateActivationEnvironment become allowed
• This is risky as it allows the application to talk to systemd directly
• A good way to start applications unconfined
• Snap packages using it would need very fine review, not many are to be trusted

with it
• As a matter of fact this is still in discussion due to this. . .

The Road to KDE Neon Core 18|

Opening The Snapd Interfaces Pandora Box

• Now that we want to confine the session things will break badly again
• Confined processes aren’t allowed to call StartUnit or

UpdateActivationEnvironment on the user systemd. . .
• Time to get the power drill out!
• We submitted a new systemd-user-control interface
• The AppArmor profile of an application is changed when having it as plug
• StartUnit and UpdateActivationEnvironment become allowed
• This is risky as it allows the application to talk to systemd directly
• A good way to start applications unconfined
• Snap packages using it would need very fine review, not many are to be trusted

with it
• As a matter of fact this is still in discussion due to this. . .

The Road to KDE Neon Core 19|

A Note About KIO

• During startup we also hit KIO::KProcessRunner for various tasks
• This one would call StartTransientUnit

• StartTransientUnit is even more frowned upon than StartUnit security wise
• Can get you to start truly anything unconfined rather easily
• It doesn’t require a preexisting unit declaration
• Luckily positioning $_KDE_APPLICATIONS_AS_FORKING does the trick
• It enforces the use of the old fork() based code path

The Road to KDE Neon Core 19|

A Note About KIO

• During startup we also hit KIO::KProcessRunner for various tasks
• This one would call StartTransientUnit

• StartTransientUnit is even more frowned upon than StartUnit security wise
• Can get you to start truly anything unconfined rather easily
• It doesn’t require a preexisting unit declaration
• Luckily positioning $_KDE_APPLICATIONS_AS_FORKING does the trick
• It enforces the use of the old fork() based code path

The Road to KDE Neon Core 19|

A Note About KIO

• During startup we also hit KIO::KProcessRunner for various tasks
• This one would call StartTransientUnit

• StartTransientUnit is even more frowned upon than StartUnit security wise
• Can get you to start truly anything unconfined rather easily
• It doesn’t require a preexisting unit declaration
• Luckily positioning $_KDE_APPLICATIONS_AS_FORKING does the trick
• It enforces the use of the old fork() based code path

The Road to KDE Neon Core 20|

Confining The Session

• Thanks to the systemd-user-control plug we could start the confined session!
• Not everything was properly working though (ksplash for instance)
• Long story short, further adjustments to snapd were needed
• This was all tested only with a GNOME Shell desktop previously
• Plasma sessions use the same D-Bus interfaces but a bit differently
• They also tend to introspect more agressively
• We thus improved the following interfaces for Plasma sessions

– desktop
– upower-observe
– system-observe
– shutdown

• We also declared all the D-Bus services the session would bind to
• And then the session was working properly from startup to shutdown

The Road to KDE Neon Core 20|

Confining The Session

• Thanks to the systemd-user-control plug we could start the confined session!
• Not everything was properly working though (ksplash for instance)
• Long story short, further adjustments to snapd were needed
• This was all tested only with a GNOME Shell desktop previously
• Plasma sessions use the same D-Bus interfaces but a bit differently
• They also tend to introspect more agressively
• We thus improved the following interfaces for Plasma sessions

– desktop
– upower-observe
– system-observe
– shutdown

• We also declared all the D-Bus services the session would bind to
• And then the session was working properly from startup to shutdown

The Road to KDE Neon Core 20|

Confining The Session

• Thanks to the systemd-user-control plug we could start the confined session!
• Not everything was properly working though (ksplash for instance)
• Long story short, further adjustments to snapd were needed
• This was all tested only with a GNOME Shell desktop previously
• Plasma sessions use the same D-Bus interfaces but a bit differently
• They also tend to introspect more agressively
• We thus improved the following interfaces for Plasma sessions

– desktop
– upower-observe
– system-observe
– shutdown

• We also declared all the D-Bus services the session would bind to
• And then the session was working properly from startup to shutdown

The Road to KDE Neon Core 20|

Confining The Session

• Thanks to the systemd-user-control plug we could start the confined session!
• Not everything was properly working though (ksplash for instance)
• Long story short, further adjustments to snapd were needed
• This was all tested only with a GNOME Shell desktop previously
• Plasma sessions use the same D-Bus interfaces but a bit differently
• They also tend to introspect more agressively
• We thus improved the following interfaces for Plasma sessions

– desktop
– upower-observe
– system-observe
– shutdown

• We also declared all the D-Bus services the session would bind to
• And then the session was working properly from startup to shutdown

The Road to KDE Neon Core 20|

Confining The Session

• Thanks to the systemd-user-control plug we could start the confined session!
• Not everything was properly working though (ksplash for instance)
• Long story short, further adjustments to snapd were needed
• This was all tested only with a GNOME Shell desktop previously
• Plasma sessions use the same D-Bus interfaces but a bit differently
• They also tend to introspect more agressively
• We thus improved the following interfaces for Plasma sessions

– desktop
– upower-observe
– system-observe
– shutdown

• We also declared all the D-Bus services the session would bind to
• And then the session was working properly from startup to shutdown

The Road to KDE Neon Core 21|

Confining The Session (Take 2)
Oopsie!

• Happy to have a proper session, we stayed like this and worked on other tasks
• But something was not feeling quite right. . .
• Until a comment on one of our snapd adjustments was our wake up call
• systemd-cgls confirmed that some very important processes were not confined
• Any service not declared as application in the snap would use their regular systemd

service file. . . bypassing snapd!
• Back to the drawing board. . .
• Aliases to the rescue to overload the plasma-*.service files using snapd ones
• This required improving further snapd interfaces:

– screen_inhibit_control and login_session_observe
– We also adjusted desktop some more

• Finally back on track with most processes properly confined
• Yes, even kwin, plasmashell and kded6 having specific confinement rules

The Road to KDE Neon Core 21|

Confining The Session (Take 2)
Oopsie!

• Happy to have a proper session, we stayed like this and worked on other tasks
• But something was not feeling quite right. . .
• Until a comment on one of our snapd adjustments was our wake up call
• systemd-cgls confirmed that some very important processes were not confined
• Any service not declared as application in the snap would use their regular systemd

service file. . . bypassing snapd!
• Back to the drawing board. . .
• Aliases to the rescue to overload the plasma-*.service files using snapd ones
• This required improving further snapd interfaces:

– screen_inhibit_control and login_session_observe
– We also adjusted desktop some more

• Finally back on track with most processes properly confined
• Yes, even kwin, plasmashell and kded6 having specific confinement rules

The Road to KDE Neon Core 21|

Confining The Session (Take 2)
Oopsie!

• Happy to have a proper session, we stayed like this and worked on other tasks
• But something was not feeling quite right. . .
• Until a comment on one of our snapd adjustments was our wake up call
• systemd-cgls confirmed that some very important processes were not confined
• Any service not declared as application in the snap would use their regular systemd

service file. . . bypassing snapd!
• Back to the drawing board. . .
• Aliases to the rescue to overload the plasma-*.service files using snapd ones
• This required improving further snapd interfaces:

– screen_inhibit_control and login_session_observe
– We also adjusted desktop some more

• Finally back on track with most processes properly confined
• Yes, even kwin, plasmashell and kded6 having specific confinement rules

The Road to KDE Neon Core 21|

Confining The Session (Take 2)
Oopsie!

• Happy to have a proper session, we stayed like this and worked on other tasks
• But something was not feeling quite right. . .
• Until a comment on one of our snapd adjustments was our wake up call
• systemd-cgls confirmed that some very important processes were not confined
• Any service not declared as application in the snap would use their regular systemd

service file. . . bypassing snapd!
• Back to the drawing board. . .
• Aliases to the rescue to overload the plasma-*.service files using snapd ones
• This required improving further snapd interfaces:

– screen_inhibit_control and login_session_observe
– We also adjusted desktop some more

• Finally back on track with most processes properly confined
• Yes, even kwin, plasmashell and kded6 having specific confinement rules

The Road to KDE Neon Core 21|

Confining The Session (Take 2)
Oopsie!

• Happy to have a proper session, we stayed like this and worked on other tasks
• But something was not feeling quite right. . .
• Until a comment on one of our snapd adjustments was our wake up call
• systemd-cgls confirmed that some very important processes were not confined
• Any service not declared as application in the snap would use their regular systemd

service file. . . bypassing snapd!
• Back to the drawing board. . .
• Aliases to the rescue to overload the plasma-*.service files using snapd ones
• This required improving further snapd interfaces:

– screen_inhibit_control and login_session_observe
– We also adjusted desktop some more

• Finally back on track with most processes properly confined
• Yes, even kwin, plasmashell and kded6 having specific confinement rules

The Road to KDE Neon Core 22|

Launching Apps

• But how can plasmashell or krunner start other applications?
• One point of the confined processes is their inability to call snap run. . .
• How are other applications started?

• There is a pending snapd feature for this
• snapd generates desktop files for the declared applications

The Road to KDE Neon Core 22|

Launching Apps

• But how can plasmashell or krunner start other applications?
• One point of the confined processes is their inability to call snap run. . .
• How are other applications started?

• There is a pending snapd feature for this
• snapd generates desktop files for the declared applications

The Road to KDE Neon Core 23|

Launching Apps cont’d

• The Exec line is:
snap routine desktop-launch --desktop <desktop file>

• This would in turn talk to io.snapcraft.PrivilegedDesktopLauncher
• Only allowed if the requesting application has the desktop-launch plug

• “Fun fact”, this would also horribly break if the $SNAP variable is leaked to the
systemd environment

– Applications wouldn’t start
– Any application connected to the desktop slot of plasma-desktop-session would

prevent the startup
- Don’t you like black screens by now?

The Road to KDE Neon Core 23|

Launching Apps cont’d

• The Exec line is:
snap routine desktop-launch --desktop <desktop file>

• This would in turn talk to io.snapcraft.PrivilegedDesktopLauncher
• Only allowed if the requesting application has the desktop-launch plug

• “Fun fact”, this would also horribly break if the $SNAP variable is leaked to the
systemd environment

– Applications wouldn’t start
– Any application connected to the desktop slot of plasma-desktop-session would

prevent the startup
- Don’t you like black screens by now?

The Road to KDE Neon Core 24|

What About the Apps?

The Road to KDE Neon Core 25|

Building Blocks

Any KDE app

(application snap)

kf6-core22

(content snap)

kde-qt6-core22-sdk

(content snap)

kf6-core22-sdk

(content snap)

• Unlike the session snaps, application and content snaps are populated by building
from the code

• Theming comes with its own challenges though
• This is hardly extensible through the content snap
• Also QStyle means binaries, this is harder to maintain. . .

The Road to KDE Neon Core 25|

Building Blocks

Any KDE app

(application snap)

kf6-core22

(content snap)

kde-qt6-core22-sdk

(content snap)

kf6-core22-sdk

(content snap)

• Unlike the session snaps, application and content snaps are populated by building
from the code

• Theming comes with its own challenges though
• This is hardly extensible through the content snap
• Also QStyle means binaries, this is harder to maintain. . .

The Road to KDE Neon Core 26|

Covered Applications

• As part of this project we covered a few applications
– Discover
– Gwenview
– Okular
– KWrite
– Elisa

• This allows us to have basic use cases covered
– viewing documents, images, or videos, listening to music, editing files

• They are also good blueprints for further app packaging
• Good news: most of them worked out of the box without patching
• Only Discover required patches due to its stronger proximity with snapd

– it was assuming auto-update of packages, but this can be disabled so we fixed it
– it was going through snap run to launch installed apps, unusable when confined

The Road to KDE Neon Core 26|

Covered Applications

• As part of this project we covered a few applications
– Discover
– Gwenview
– Okular
– KWrite
– Elisa

• This allows us to have basic use cases covered
– viewing documents, images, or videos, listening to music, editing files

• They are also good blueprints for further app packaging
• Good news: most of them worked out of the box without patching
• Only Discover required patches due to its stronger proximity with snapd

– it was assuming auto-update of packages, but this can be disabled so we fixed it
– it was going through snap run to launch installed apps, unusable when confined

The Road to KDE Neon Core 26|

Covered Applications

• As part of this project we covered a few applications
– Discover
– Gwenview
– Okular
– KWrite
– Elisa

• This allows us to have basic use cases covered
– viewing documents, images, or videos, listening to music, editing files

• They are also good blueprints for further app packaging
• Good news: most of them worked out of the box without patching
• Only Discover required patches due to its stronger proximity with snapd

– it was assuming auto-update of packages, but this can be disabled so we fixed it
– it was going through snap run to launch installed apps, unusable when confined

The Road to KDE Neon Core 26|

Covered Applications

• As part of this project we covered a few applications
– Discover
– Gwenview
– Okular
– KWrite
– Elisa

• This allows us to have basic use cases covered
– viewing documents, images, or videos, listening to music, editing files

• They are also good blueprints for further app packaging
• Good news: most of them worked out of the box without patching
• Only Discover required patches due to its stronger proximity with snapd

– it was assuming auto-update of packages, but this can be disabled so we fixed it
– it was going through snap run to launch installed apps, unusable when confined

The Road to KDE Neon Core 27|

Automated Tests
Under construction...

• We’d like to see the snap packages validated and tested before publication
• This means having appium tests!
• So far only KWrite, Okular and Gwenview have a test suite
• This uncovered issues with the AT-SPI WebDriver

– One function of the API wasn’t conform to the specification, making some tests
harder to write

– It was not possible to override the way the application is started (and we need it to go
through snap run)

• We’re still seeing flakiness with some tests on the CI, this still needs to be
investigated

The Road to KDE Neon Core 27|

Automated Tests
Under construction...

• We’d like to see the snap packages validated and tested before publication
• This means having appium tests!
• So far only KWrite, Okular and Gwenview have a test suite
• This uncovered issues with the AT-SPI WebDriver

– One function of the API wasn’t conform to the specification, making some tests
harder to write

– It was not possible to override the way the application is started (and we need it to go
through snap run)

• We’re still seeing flakiness with some tests on the CI, this still needs to be
investigated

The Road to KDE Neon Core 27|

Automated Tests
Under construction...

• We’d like to see the snap packages validated and tested before publication
• This means having appium tests!
• So far only KWrite, Okular and Gwenview have a test suite
• This uncovered issues with the AT-SPI WebDriver

– One function of the API wasn’t conform to the specification, making some tests
harder to write

– It was not possible to override the way the application is started (and we need it to go
through snap run)

• We’re still seeing flakiness with some tests on the CI, this still needs to be
investigated

The Road to KDE Neon Core 27|

Automated Tests
Under construction...

• We’d like to see the snap packages validated and tested before publication
• This means having appium tests!
• So far only KWrite, Okular and Gwenview have a test suite
• This uncovered issues with the AT-SPI WebDriver

– One function of the API wasn’t conform to the specification, making some tests
harder to write

– It was not possible to override the way the application is started (and we need it to go
through snap run)

• We’re still seeing flakiness with some tests on the CI, this still needs to be
investigated

The Road to KDE Neon Core 28|

CI/CD

The Road to KDE Neon Core 29|

Build And Publish Snaps

• We naively assumed snap building on the KDE CI was already working
• Turns out the plug was pulled a few weeks before we started our project
• So we had to build something new. . .
• snapcraft proved to be difficult to run inside rootless containers. . .
• So we moved everything to a specific VM provided by sysadmin
• We have SSH access there, it will serve as a blueprint for ephemeral VMs later on
• It properly builds snaps and push them to the store
• It only pushes to the latest/edge channel for now
• There are plans to push on different channels depending on the branch
• Once the flakiness issues with the AT-SPI WebDriver are solved, appium tests will

be used to check the snap is working before pushing

The Road to KDE Neon Core 29|

Build And Publish Snaps

• We naively assumed snap building on the KDE CI was already working
• Turns out the plug was pulled a few weeks before we started our project
• So we had to build something new. . .
• snapcraft proved to be difficult to run inside rootless containers. . .
• So we moved everything to a specific VM provided by sysadmin
• We have SSH access there, it will serve as a blueprint for ephemeral VMs later on
• It properly builds snaps and push them to the store
• It only pushes to the latest/edge channel for now
• There are plans to push on different channels depending on the branch
• Once the flakiness issues with the AT-SPI WebDriver are solved, appium tests will

be used to check the snap is working before pushing

The Road to KDE Neon Core 29|

Build And Publish Snaps

• We naively assumed snap building on the KDE CI was already working
• Turns out the plug was pulled a few weeks before we started our project
• So we had to build something new. . .
• snapcraft proved to be difficult to run inside rootless containers. . .
• So we moved everything to a specific VM provided by sysadmin
• We have SSH access there, it will serve as a blueprint for ephemeral VMs later on
• It properly builds snaps and push them to the store
• It only pushes to the latest/edge channel for now
• There are plans to push on different channels depending on the branch
• Once the flakiness issues with the AT-SPI WebDriver are solved, appium tests will

be used to check the snap is working before pushing

The Road to KDE Neon Core 29|

Build And Publish Snaps

• We naively assumed snap building on the KDE CI was already working
• Turns out the plug was pulled a few weeks before we started our project
• So we had to build something new. . .
• snapcraft proved to be difficult to run inside rootless containers. . .
• So we moved everything to a specific VM provided by sysadmin
• We have SSH access there, it will serve as a blueprint for ephemeral VMs later on
• It properly builds snaps and push them to the store
• It only pushes to the latest/edge channel for now
• There are plans to push on different channels depending on the branch
• Once the flakiness issues with the AT-SPI WebDriver are solved, appium tests will

be used to check the snap is working before pushing

The Road to KDE Neon Core 29|

Build And Publish Snaps

• We naively assumed snap building on the KDE CI was already working
• Turns out the plug was pulled a few weeks before we started our project
• So we had to build something new. . .
• snapcraft proved to be difficult to run inside rootless containers. . .
• So we moved everything to a specific VM provided by sysadmin
• We have SSH access there, it will serve as a blueprint for ephemeral VMs later on
• It properly builds snaps and push them to the store
• It only pushes to the latest/edge channel for now
• There are plans to push on different channels depending on the branch
• Once the flakiness issues with the AT-SPI WebDriver are solved, appium tests will

be used to check the snap is working before pushing

The Road to KDE Neon Core 29|

Build And Publish Snaps

• We naively assumed snap building on the KDE CI was already working
• Turns out the plug was pulled a few weeks before we started our project
• So we had to build something new. . .
• snapcraft proved to be difficult to run inside rootless containers. . .
• So we moved everything to a specific VM provided by sysadmin
• We have SSH access there, it will serve as a blueprint for ephemeral VMs later on
• It properly builds snaps and push them to the store
• It only pushes to the latest/edge channel for now
• There are plans to push on different channels depending on the branch
• Once the flakiness issues with the AT-SPI WebDriver are solved, appium tests will

be used to check the snap is working before pushing

The Road to KDE Neon Core 30|

Building Images

• ubuntu-image is used to assemble a system image based on our snaps
• It was not easy to setup on our CI
• Input files (called models) need to be signed
• We tried to have developers signing locally with their own keys to make test images
• While the CI was signing with the official KDE key to make published images
• Turned out to be a problem

– Admittedly cumbersome for each developers to have keys to manage
– Also tooling would later prevent building the image in some circumstances (some key

snap packages need to be signed with the same key as the model)

• We couldn’t rely on using “Ben as a Service” to sign the models when they change!
• Instead we have a manual CI job meant to create updated models
• Those are always signed with the KDE key
• This is much easier
• Developers still need to download the resulting artifacts and commit them

The Road to KDE Neon Core 30|

Building Images

• ubuntu-image is used to assemble a system image based on our snaps
• It was not easy to setup on our CI
• Input files (called models) need to be signed
• We tried to have developers signing locally with their own keys to make test images
• While the CI was signing with the official KDE key to make published images
• Turned out to be a problem

– Admittedly cumbersome for each developers to have keys to manage
– Also tooling would later prevent building the image in some circumstances (some key

snap packages need to be signed with the same key as the model)

• We couldn’t rely on using “Ben as a Service” to sign the models when they change!
• Instead we have a manual CI job meant to create updated models
• Those are always signed with the KDE key
• This is much easier
• Developers still need to download the resulting artifacts and commit them

The Road to KDE Neon Core 30|

Building Images

• ubuntu-image is used to assemble a system image based on our snaps
• It was not easy to setup on our CI
• Input files (called models) need to be signed
• We tried to have developers signing locally with their own keys to make test images
• While the CI was signing with the official KDE key to make published images
• Turned out to be a problem

– Admittedly cumbersome for each developers to have keys to manage
– Also tooling would later prevent building the image in some circumstances (some key

snap packages need to be signed with the same key as the model)

• We couldn’t rely on using “Ben as a Service” to sign the models when they change!
• Instead we have a manual CI job meant to create updated models
• Those are always signed with the KDE key
• This is much easier
• Developers still need to download the resulting artifacts and commit them

The Road to KDE Neon Core 30|

Building Images

• ubuntu-image is used to assemble a system image based on our snaps
• It was not easy to setup on our CI
• Input files (called models) need to be signed
• We tried to have developers signing locally with their own keys to make test images
• While the CI was signing with the official KDE key to make published images
• Turned out to be a problem

– Admittedly cumbersome for each developers to have keys to manage
– Also tooling would later prevent building the image in some circumstances (some key

snap packages need to be signed with the same key as the model)

• We couldn’t rely on using “Ben as a Service” to sign the models when they change!
• Instead we have a manual CI job meant to create updated models
• Those are always signed with the KDE key
• This is much easier
• Developers still need to download the resulting artifacts and commit them

The Road to KDE Neon Core 31|

Building ISOs

• System images are nice for quickly testing, you can just spawn qemu
– We even provide a script in the repository to do this

• But really, people will need ISOs to install on a computer or in a VM
• Again this was incompatible with rootless containers
• Lots of the steps require root

– e.g. a few bind mounts are needed

• We can’t wait to see the KDE Sysadmins deliver their project to switch from
containers to VMs!

The Road to KDE Neon Core 31|

Building ISOs

• System images are nice for quickly testing, you can just spawn qemu
– We even provide a script in the repository to do this

• But really, people will need ISOs to install on a computer or in a VM
• Again this was incompatible with rootless containers
• Lots of the steps require root

– e.g. a few bind mounts are needed

• We can’t wait to see the KDE Sysadmins deliver their project to switch from
containers to VMs!

The Road to KDE Neon Core 31|

Building ISOs

• System images are nice for quickly testing, you can just spawn qemu
– We even provide a script in the repository to do this

• But really, people will need ISOs to install on a computer or in a VM
• Again this was incompatible with rootless containers
• Lots of the steps require root

– e.g. a few bind mounts are needed

• We can’t wait to see the KDE Sysadmins deliver their project to switch from
containers to VMs!

The Road to KDE Neon Core 31|

Building ISOs

• System images are nice for quickly testing, you can just spawn qemu
– We even provide a script in the repository to do this

• But really, people will need ISOs to install on a computer or in a VM
• Again this was incompatible with rootless containers
• Lots of the steps require root

– e.g. a few bind mounts are needed

• We can’t wait to see the KDE Sysadmins deliver their project to switch from
containers to VMs!

The Road to KDE Neon Core 32|

Development Challenges

The Road to KDE Neon Core 33|

Encountered Problems Recap

• In the assembled system we covered several issues
– Black screens of various provenance (with and without confinement)
– Applications not being started
– Applications not doing what they should

• How did we approach those?

The Road to KDE Neon Core 34|

Problems With a Snap Application

• Can be anything ranging from not starting to weird GUI glitches
• Probably worth checking if it is reproduceable outside of Ubuntu Core
• In this case you can use regular snap troubleshooting recipes
• snappy-debug

– To process logs and point Seccomp or AppArmor violations
– It even suggests fixes

• snap run --shell
– To introspect the process environment
– It greatly helps to understand how an application “sees the system”

• snap run --strace
– To ease syscall debugging
– It helps to find system call failures

• snap run --gdbserver
– To run the application with gdb
– debuginfod support will be required

The Road to KDE Neon Core 34|

Problems With a Snap Application

• Can be anything ranging from not starting to weird GUI glitches
• Probably worth checking if it is reproduceable outside of Ubuntu Core
• In this case you can use regular snap troubleshooting recipes
• snappy-debug

– To process logs and point Seccomp or AppArmor violations
– It even suggests fixes

• snap run --shell
– To introspect the process environment
– It greatly helps to understand how an application “sees the system”

• snap run --strace
– To ease syscall debugging
– It helps to find system call failures

• snap run --gdbserver
– To run the application with gdb
– debuginfod support will be required

The Road to KDE Neon Core 34|

Problems With a Snap Application

• Can be anything ranging from not starting to weird GUI glitches
• Probably worth checking if it is reproduceable outside of Ubuntu Core
• In this case you can use regular snap troubleshooting recipes
• snappy-debug

– To process logs and point Seccomp or AppArmor violations
– It even suggests fixes

• snap run --shell
– To introspect the process environment
– It greatly helps to understand how an application “sees the system”

• snap run --strace
– To ease syscall debugging
– It helps to find system call failures

• snap run --gdbserver
– To run the application with gdb
– debuginfod support will be required

The Road to KDE Neon Core 34|

Problems With a Snap Application

• Can be anything ranging from not starting to weird GUI glitches
• Probably worth checking if it is reproduceable outside of Ubuntu Core
• In this case you can use regular snap troubleshooting recipes
• snappy-debug

– To process logs and point Seccomp or AppArmor violations
– It even suggests fixes

• snap run --shell
– To introspect the process environment
– It greatly helps to understand how an application “sees the system”

• snap run --strace
– To ease syscall debugging
– It helps to find system call failures

• snap run --gdbserver
– To run the application with gdb
– debuginfod support will be required

The Road to KDE Neon Core 34|

Problems With a Snap Application

• Can be anything ranging from not starting to weird GUI glitches
• Probably worth checking if it is reproduceable outside of Ubuntu Core
• In this case you can use regular snap troubleshooting recipes
• snappy-debug

– To process logs and point Seccomp or AppArmor violations
– It even suggests fixes

• snap run --shell
– To introspect the process environment
– It greatly helps to understand how an application “sees the system”

• snap run --strace
– To ease syscall debugging
– It helps to find system call failures

• snap run --gdbserver
– To run the application with gdb
– debuginfod support will be required

The Road to KDE Neon Core 35|

Problems With The Session

• snappy-debug can come in handy still
– Be careful about the proposed fixes, they can be misleading in this context!

• Otherwise. . . a bit on your own regarding snap specific tooling
• This requires going straight to lower levels
• Rolling your own plasma-desktop-session snap

– Not that hard or time consuming to iterate
– Allows to easily modify session startup scripts

- export QT_LOGGING_RULES="*.debug=true"
- export QDBUS_DEBUG=1
- systemd-analyze --user set-log-level debug

– All the logs you can dream of!

• Rolling you own plasma-core22-desktop snap
– We provide a enable-developer-access.sh to tune it
– Opens root access on the first serial port
– Installs extra developer tools (AppArmor, gdb and D-Bus related)
– From there you can attach and debug anything

- Configuring debuginfod is strongly recommended of course

The Road to KDE Neon Core 35|

Problems With The Session

• snappy-debug can come in handy still
– Be careful about the proposed fixes, they can be misleading in this context!

• Otherwise. . . a bit on your own regarding snap specific tooling
• This requires going straight to lower levels
• Rolling your own plasma-desktop-session snap

– Not that hard or time consuming to iterate
– Allows to easily modify session startup scripts

- export QT_LOGGING_RULES="*.debug=true"
- export QDBUS_DEBUG=1
- systemd-analyze --user set-log-level debug

– All the logs you can dream of!

• Rolling you own plasma-core22-desktop snap
– We provide a enable-developer-access.sh to tune it
– Opens root access on the first serial port
– Installs extra developer tools (AppArmor, gdb and D-Bus related)
– From there you can attach and debug anything

- Configuring debuginfod is strongly recommended of course

The Road to KDE Neon Core 35|

Problems With The Session

• snappy-debug can come in handy still
– Be careful about the proposed fixes, they can be misleading in this context!

• Otherwise. . . a bit on your own regarding snap specific tooling
• This requires going straight to lower levels
• Rolling your own plasma-desktop-session snap

– Not that hard or time consuming to iterate
– Allows to easily modify session startup scripts

- export QT_LOGGING_RULES="*.debug=true"
- export QDBUS_DEBUG=1
- systemd-analyze --user set-log-level debug

– All the logs you can dream of!

• Rolling you own plasma-core22-desktop snap
– We provide a enable-developer-access.sh to tune it
– Opens root access on the first serial port
– Installs extra developer tools (AppArmor, gdb and D-Bus related)
– From there you can attach and debug anything

- Configuring debuginfod is strongly recommended of course

The Road to KDE Neon Core 35|

Problems With The Session

• snappy-debug can come in handy still
– Be careful about the proposed fixes, they can be misleading in this context!

• Otherwise. . . a bit on your own regarding snap specific tooling
• This requires going straight to lower levels
• Rolling your own plasma-desktop-session snap

– Not that hard or time consuming to iterate
– Allows to easily modify session startup scripts

- export QT_LOGGING_RULES="*.debug=true"
- export QDBUS_DEBUG=1
- systemd-analyze --user set-log-level debug

– All the logs you can dream of!

• Rolling you own plasma-core22-desktop snap
– We provide a enable-developer-access.sh to tune it
– Opens root access on the first serial port
– Installs extra developer tools (AppArmor, gdb and D-Bus related)
– From there you can attach and debug anything

- Configuring debuginfod is strongly recommended of course

The Road to KDE Neon Core 36|

It Is All Immutable!

• This needs to be kept in mind
• Be strategic in what you can prioritise
• You can iterate quickly on

– application snaps
– plasma-desktop-session snap (requires logging out though)
– even snapd (might require a reboot)

• But iterating on plasma-core22-desktop changes. . .
• They often require regenerating the system image
• This is a much slower feedback loop

The Road to KDE Neon Core 36|

It Is All Immutable!

• This needs to be kept in mind
• Be strategic in what you can prioritise
• You can iterate quickly on

– application snaps
– plasma-desktop-session snap (requires logging out though)
– even snapd (might require a reboot)

• But iterating on plasma-core22-desktop changes. . .
• They often require regenerating the system image
• This is a much slower feedback loop

The Road to KDE Neon Core 36|

It Is All Immutable!

• This needs to be kept in mind
• Be strategic in what you can prioritise
• You can iterate quickly on

– application snaps
– plasma-desktop-session snap (requires logging out though)
– even snapd (might require a reboot)

• But iterating on plasma-core22-desktop changes. . .
• They often require regenerating the system image
• This is a much slower feedback loop

The Road to KDE Neon Core 37|

Current Limitations

The Road to KDE Neon Core 38|

The Woes of Unmerged Snapd Changes

• As mentioned systemd-user-control is still in discussion
• This has unfortunate consequences. . .
• The official snapd doesn’t have the interface
• This means we can only start the session with a temporary snapd fork
• The snap store assertions for plasma-desktop-session doesn’t allow the

systemd-user-control interface
• So we can’t publish plasma-desktop-session on the store
• This means injecting a local build when making images
• If plasma-desktop-session doesn’t come from the store, snapd won’t

auto-connect its interfaces
• This means manual connections are necessary for anything to start
• This isn’t great for the user experience for now
• We hope this will get solved soon, making everything nicer to use

The Road to KDE Neon Core 38|

The Woes of Unmerged Snapd Changes

• As mentioned systemd-user-control is still in discussion
• This has unfortunate consequences. . .
• The official snapd doesn’t have the interface
• This means we can only start the session with a temporary snapd fork
• The snap store assertions for plasma-desktop-session doesn’t allow the

systemd-user-control interface
• So we can’t publish plasma-desktop-session on the store
• This means injecting a local build when making images
• If plasma-desktop-session doesn’t come from the store, snapd won’t

auto-connect its interfaces
• This means manual connections are necessary for anything to start
• This isn’t great for the user experience for now
• We hope this will get solved soon, making everything nicer to use

The Road to KDE Neon Core 38|

The Woes of Unmerged Snapd Changes

• As mentioned systemd-user-control is still in discussion
• This has unfortunate consequences. . .
• The official snapd doesn’t have the interface
• This means we can only start the session with a temporary snapd fork
• The snap store assertions for plasma-desktop-session doesn’t allow the

systemd-user-control interface
• So we can’t publish plasma-desktop-session on the store
• This means injecting a local build when making images
• If plasma-desktop-session doesn’t come from the store, snapd won’t

auto-connect its interfaces
• This means manual connections are necessary for anything to start
• This isn’t great for the user experience for now
• We hope this will get solved soon, making everything nicer to use

The Road to KDE Neon Core 38|

The Woes of Unmerged Snapd Changes

• As mentioned systemd-user-control is still in discussion
• This has unfortunate consequences. . .
• The official snapd doesn’t have the interface
• This means we can only start the session with a temporary snapd fork
• The snap store assertions for plasma-desktop-session doesn’t allow the

systemd-user-control interface
• So we can’t publish plasma-desktop-session on the store
• This means injecting a local build when making images
• If plasma-desktop-session doesn’t come from the store, snapd won’t

auto-connect its interfaces
• This means manual connections are necessary for anything to start
• This isn’t great for the user experience for now
• We hope this will get solved soon, making everything nicer to use

The Road to KDE Neon Core 38|

The Woes of Unmerged Snapd Changes

• As mentioned systemd-user-control is still in discussion
• This has unfortunate consequences. . .
• The official snapd doesn’t have the interface
• This means we can only start the session with a temporary snapd fork
• The snap store assertions for plasma-desktop-session doesn’t allow the

systemd-user-control interface
• So we can’t publish plasma-desktop-session on the store
• This means injecting a local build when making images
• If plasma-desktop-session doesn’t come from the store, snapd won’t

auto-connect its interfaces
• This means manual connections are necessary for anything to start
• This isn’t great for the user experience for now
• We hope this will get solved soon, making everything nicer to use

The Road to KDE Neon Core 39|

Upcoming Work

The Road to KDE Neon Core 40|

The Switch to Core 24

• Actually some preliminary work has been done
• This required a KDE Neon snapshot for Noble Numbat
• Shouldn’t impact our architecture much
• That’s a lot of components which will change

– So a lot could go wrong. . .

• Will also allow a better approach for the provisioning
• We’ll introduce the use of provd and a new wizard
• This should bring more configurability to the provisioning

The Road to KDE Neon Core 40|

The Switch to Core 24

• Actually some preliminary work has been done
• This required a KDE Neon snapshot for Noble Numbat
• Shouldn’t impact our architecture much
• That’s a lot of components which will change

– So a lot could go wrong. . .

• Will also allow a better approach for the provisioning
• We’ll introduce the use of provd and a new wizard
• This should bring more configurability to the provisioning

The Road to KDE Neon Core 40|

The Switch to Core 24

• Actually some preliminary work has been done
• This required a KDE Neon snapshot for Noble Numbat
• Shouldn’t impact our architecture much
• That’s a lot of components which will change

– So a lot could go wrong. . .

• Will also allow a better approach for the provisioning
• We’ll introduce the use of provd and a new wizard
• This should bring more configurability to the provisioning

The Road to KDE Neon Core 41|

More Modular Architecture
Warning: subject to changes!

pc-desktop

(gadget snap)

core24

(base snap)

plasma-desktop-session

(application snap)

ubuntu-desktop-init

(application snap)

pc-kernel

(kernel snap)

snapd

(snapd snap)

firefox

(application snap)

okular

(application snap)

kwrite

(application snap)

elisa

(application snap)

kf6-core24

(content snap)

network-manager

(application snap)

cups

(application snap)

avahi

(application snap)

bluez

(application snap)

lxd

(application snap)

...

(application snap)

sddm

(application snap)

plasma-core

(content snap)

???

• Current architecture was a good start but isn’t ideal
– Composability, components size and coupling to the base snap

• Time to attempt to decouple and to slice things further

The Road to KDE Neon Core 42|

Lessons Learned

The Road to KDE Neon Core 43|

Lessons Learned

• I never really liked packaging. . . that said, application snaps are easier to write
• The documentation is generally good and the recipes rather short
• The kde-neon-6 snapcraft extension helps quite a bit

• The Ubuntu Core Desktop architecture being more in a state of flux, this is
obviously less documented and tools have sharper edges

• The behavior enforced via the snap store can make things harder for development
• systemd-user-control being on hold prevents unlocking quite some of the

potential for now

The Road to KDE Neon Core 43|

Lessons Learned

• I never really liked packaging. . . that said, application snaps are easier to write
• The documentation is generally good and the recipes rather short
• The kde-neon-6 snapcraft extension helps quite a bit

• The Ubuntu Core Desktop architecture being more in a state of flux, this is
obviously less documented and tools have sharper edges

• The behavior enforced via the snap store can make things harder for development
• systemd-user-control being on hold prevents unlocking quite some of the

potential for now

The Road to KDE Neon Core 43|

Lessons Learned

• I never really liked packaging. . . that said, application snaps are easier to write
• The documentation is generally good and the recipes rather short
• The kde-neon-6 snapcraft extension helps quite a bit

• The Ubuntu Core Desktop architecture being more in a state of flux, this is
obviously less documented and tools have sharper edges

• The behavior enforced via the snap store can make things harder for development
• systemd-user-control being on hold prevents unlocking quite some of the

potential for now

The Road to KDE Neon Core 44|

Lessons Learned cont’d

• We have good tooling to debug systemd related issues nowadays

• Double check and even triple check what is really confined
• Confining progressively makes things easier

• Avoid using StartTransientUnit in application code and dependencies
• Or provide a fork based alternative
• KIO::KProcessRunner fork based implementation has to be maintained
• We can’t afford to deprecate it if we want to get serious at sandboxing

The Road to KDE Neon Core 44|

Lessons Learned cont’d

• We have good tooling to debug systemd related issues nowadays

• Double check and even triple check what is really confined
• Confining progressively makes things easier

• Avoid using StartTransientUnit in application code and dependencies
• Or provide a fork based alternative
• KIO::KProcessRunner fork based implementation has to be maintained
• We can’t afford to deprecate it if we want to get serious at sandboxing

The Road to KDE Neon Core 44|

Lessons Learned cont’d

• We have good tooling to debug systemd related issues nowadays

• Double check and even triple check what is really confined
• Confining progressively makes things easier

• Avoid using StartTransientUnit in application code and dependencies
• Or provide a fork based alternative
• KIO::KProcessRunner fork based implementation has to be maintained
• We can’t afford to deprecate it if we want to get serious at sandboxing

The Road to KDE Neon Core 45|

Where To Contribute?

• If you’re interested here are the GitLab projects to monitor
– https://invent.kde.org/neon/ubuntu-core
– https://invent.kde.org/neon/snap-packaging

• We also have some documentation
– https://community.kde.org/Guidelines_and_HOWTOs/Snap
– https://community.kde.org/Neon/Core

• Come talk to us!

The Road to KDE Neon Core 46|

Acknowledgments

• Thanks to the enioka Haute Couture team
– Benjamin Port
– Antoine Gonzalez
– Antoine Herlicq

• Thanks to the contractors we’re working with
– Scarlett Moore
– Carlos De Maine

• Thanks to the gearheads who provided help on their spare time
– Harald Sitter
– David Edmundson
– Ben Cooksley

The Road to KDE Neon Core 47|

Thank You!

Questions?
ervin@kde.org

kevin.ottens@enioka.com

mailto:Kevin Ottens <ervin@kde.org>
mailto:Kevin Ottens <kevin.ottens@enioka.com>

	Introduction
	Snap Confinement Basics
	KDE Neon Core Architecture
	What About the Apps?
	CI/CD
	Development Challenges
	Current Limitations
	Upcoming Work
	Lessons Learned

