
KDE Stack Overview and How It All Fit Together
High Level? Low Level? It’ll be both my friend!

Kevin Ottens

KDE Stack Overview and How It All Fit Together 2|

whoami

• Started to use KDE with 1.0-beta1 in 1997
• Procrastinated until 2003 to finally contribute code
• Fell in love with the community back then
• Kept doing things here and there. . . most notably helped with:

– kdelibs
– KDE Frameworks architecture
– the KDE Manifesto
– Community Data Analytics

• Part of the enioka Haute Couture family
• Living in Toulouse

KDE Stack Overview and How It All Fit Together 3|

Our Goals for Today

• Increase our general knowledge of the “KDE Stack”
– As such it will be mostly high level views
– Don’t worry there will be a few code snippets though

• Get a feel for how extensive it all is
– Can’t be exhaustive though, would take days and be pointless
– We’ll try to cover at least the most important/pervasive pieces

• Develop an idea of the integration points between all those pieces
– Obviously has an impact on what we decided to cover or not
– Also means we’ll have to go with lower level topics from time to time

• Disclaimer: Your head might spin, this is to be expected
– It is a lot to absorb in one go
– Ask questions along the way before you feel lost

KDE Stack Overview and How It All Fit Together 3|

Our Goals for Today

• Increase our general knowledge of the “KDE Stack”
– As such it will be mostly high level views
– Don’t worry there will be a few code snippets though

• Get a feel for how extensive it all is
– Can’t be exhaustive though, would take days and be pointless
– We’ll try to cover at least the most important/pervasive pieces

• Develop an idea of the integration points between all those pieces
– Obviously has an impact on what we decided to cover or not
– Also means we’ll have to go with lower level topics from time to time

• Disclaimer: Your head might spin, this is to be expected
– It is a lot to absorb in one go
– Ask questions along the way before you feel lost

KDE Stack Overview and How It All Fit Together 4|

History

KDE Stack Overview and How It All Fit Together 5|

Objectives

• Refresh our knowledge of signals and slots
• Have an idea of the complex history of our stack
• Identify the defining parts of our stack
• Highlight the relationship between Qt and the KDE stack
• Have a first approach to how our products fit together

KDE Stack Overview and How It All Fit Together 6|

Early Days

• 14 October 1996: Matthias Ettrich announces the “Kool Desktop Environment”
• Willing to use Qt which already had a lot of potential
• November 1996: kdelibs-0.0.1.tar.gz
• Just before Christmas: kwm, kpanel and kfm. . .
• February 1997: creation of the KDE-FreeQt Foundation
• May 1997: Linux-Kongress presentation
• August 1997: First paper in a german journal

KDE Stack Overview and How It All Fit Together 7|

KDE1

• 28 August 1997: KDE-One meeting
• 20 October 1997: Beta 1
• 23 November 1997: Beta 2
• December 1997: KDE e.V. is founded
• 1 February 1998: Beta 3
• 19 April 1998: Beta 4
• 12 July 1998: KDE 1.0

KDE Stack Overview and How It All Fit Together 8|

KDE1 cont’d

KDE is a network transparent, contemporary desktop environment for Unix
workstations. KDE seeks to fill the need for an easy to use desktop for Unix
workstations, similar to the desktop environments found under the MacOS
or Window95/NT. We believe that the Unix operating system is the best
operating system available today

• Availability of OpenParts (CORBA based), and of KMail

KDE Stack Overview and How It All Fit Together 9|

KDE2

• 7 October 1999: KDE-Two meeting
– Move away from CORBA, creation of Kanossa which will become KParts
– Matthias Ettrich and Preston Brown get drunk and think they can write an ORB in

one night. . .
– . . . the result is DCOP!

• 9 July 2000: KDE-Three Beta meeting
• 23 October 2000: KDE 2.0
• Availability of

– DCOP
– KParts
– KIO

KDE Stack Overview and How It All Fit Together 10|

KDE3

• 25 February 2002: KDE-Three meeting
• 3 April 2002: KDE 3.0
• 22 August 2003: Kastle (Czech Republic)
• 3 February 2004: KDE 3.2
• 21 August 2004: aKademy (Germany)
• 26 August 2005: aKademy (Spain)
• 29 November 2005: KDE 3.5

KDE Stack Overview and How It All Fit Together 11|

KDE4

• 23 September 2006: aKademy 2006 (Ireland)
• 14 October 2006: KDE has ten years
• 30 June 2007: aKademy 2007 (Scotland)
• 11 January 2008: KDE 4.0
• Switched from DCOP to DBus
• Availability of

– Plasma
– Phonon
– Solid
– ThreadWeaver

• 9 August 2008: aKademy 2008 (Belgium)
• 3 July 2009: Desktop Summit (Gran Canaria)
• 24 November 2009: Rebranding of KDE
• 3 July 2010: Akademy 2010 (Finland)
• December 2010: KDE Mobile meeting

KDE Stack Overview and How It All Fit Together 12|

KDE Frameworks 5 & 6

• June 2011: Platform 11 in Randa
• 6 August 2011: Desktop Summit (Berlin)
• 9 October 2011: Plasma Active One (KDE 4 based)

– Calligra Active
– Kontact Touch

• More Akademies obviously. . .

• 7 July 2014: KDE Frameworks 5.0
• 15 July 2014: Plasma 5.0
• 25 July 2015: Plasma Mobile announced

• 28 February 2024: KDE Frameworks 6.0 and Plasma 6.0

This training will focus mostly on the stack at that stage of evolution

KDE Stack Overview and How It All Fit Together 13|

A Few Words About Qt’s History

• 1991:
– Eirik Chambe-Eng and Haavard Nord start writing Qt
– The event loop and the signals/slots mechanisms are already there

• 1994: Trolltech incorporated in Oslo, Norway
• 1996: First Qt sale (ESA!)
• 1997: creation of the KDE-FreeQt Foundation
• 1999: Qt2
• 2000:

– Qt/Embedded
– Qt/X11 available under the GPL
– uic and designer are introduced in Qt 2.2

• 2001:
– Sharp uses Qtopia in its products
– Qt3

• 2003: Qt/Mac available under GPL
• 2004: Qtopia Phone Edition is released

KDE Stack Overview and How It All Fit Together 14|

A Few Words About Qt’s History cont’d

• 2005:
– Qt4 with Interview (MVC for item views) and Arthur (2D painting engine)
– Qt/Windows available under the GPL

• 2008: Acquired by Nokia
• 2010: QML and QtQuick are introduced in Qt 4.7
• 2011: Qt Platform Abstraction is introduced in Qt 4.8
• 2012: Acquired by Digia, Qt5 released
• 2014: The Qt Company demerger starts
• 2020: Qt 6.0
• 2024: Qt 6.7

KDE Stack Overview and How It All Fit Together 15|

Our Stack: 10’000 Feet View

Hardware

Kernel

Display System

Toolkit

ApplicationsWorkspace

Integration

• Base workspace: KWin, PlasmaShell, etc.
• Applications: Krita, Dolphin, Elisa, etc.
• Toolkit: Qt and KDE Frameworks
• Display System: X.org or Wayland
• Kernel: Linux or *BSD
• Hardware: anything that can run the kernel and

the display system

• Integration: plugins for the toolkit to play nicely
in the workspace

– This is essential for what we do
– Always keep it in mind!

KDE Stack Overview and How It All Fit Together 16|

Thank You For Coming!

Questions?

KDE Stack Overview and How It All Fit Together 17|

Just Kidding. . .

KDE Stack Overview and How It All Fit Together 18|

Questions and Answers

• Which of the most ancient pieces of tech in the KDE stack you spotted?
• Which are the most ancient important mechanisms in Qt?
• Which Qt Widgets defining features can you cite?
• How do the workspace and the toolkit relate to each other?

KDE Stack Overview and How It All Fit Together 18|

Questions and Answers

• Which of the most ancient pieces of tech in the KDE stack you spotted?
• Which are the most ancient important mechanisms in Qt?
• Which Qt Widgets defining features can you cite?
• How do the workspace and the toolkit relate to each other?

KDE Stack Overview and How It All Fit Together 18|

Questions and Answers

• Which of the most ancient pieces of tech in the KDE stack you spotted?
• Which are the most ancient important mechanisms in Qt?
• Which Qt Widgets defining features can you cite?
• How do the workspace and the toolkit relate to each other?

KDE Stack Overview and How It All Fit Together 18|

Questions and Answers

• Which of the most ancient pieces of tech in the KDE stack you spotted?
• Which are the most ancient important mechanisms in Qt?
• Which Qt Widgets defining features can you cite?
• How do the workspace and the toolkit relate to each other?

KDE Stack Overview and How It All Fit Together 19|

Key Takeaways

• The initial KDE vision is still resonating with our products today (e.g. network
transparent is still very much a thing)

• CORBA has been defining to our stack, it’s what led to KParts and ultimately DBus
– Sidenote: You pretty much need KIO to support some of KParts features

• The form factor discussion and going mobile goes back a long way if you account
for Qt history

• Plasma predates QtQuick and QML
• All our products have a well defined role in the stack
• We’ll talk quite a bit about how to keep it all properly integrated when used

altogether

KDE Stack Overview and How It All Fit Together 20|

Anatomy of a Qt Application

KDE Stack Overview and How It All Fit Together 21|

Objectives

• Have a better idea about how the event loop works
• Also have a slightly closer view to the platform abstraction layer in Qt
• Get a first approach at how we leverage both
• Weight how application code is structured in QtWidget applications vs QtQuick

applications

KDE Stack Overview and How It All Fit Together 22|

Signals and Slots Refresher (1/5)
aka The Qt Dev Bread and Butter

• An object “emits” a signal when something potentially interesting to the outside
happens

• One or more objects receive the signal thanks to a method having a compatible
signature

• Easy to go event based programming
• Loose coupling

KDE Stack Overview and How It All Fit Together 23|

Signals and Slots Refresher (2/5)
aka The Qt Dev Bread and Butter

#include <QObject>
#include <QPoint>

class Beacon : public QObject
{

Q_OBJECT
signals:

void beamOfLight(const QPoint &pos, int degree);
};

KDE Stack Overview and How It All Fit Together 24|

Signals and Slots Refresher (3/5)
aka The Qt Dev Bread and Butter

#include <QObject>
#include <QPoint>

class Ship : public QObject
{

Q_OBJECT
slots:

void lightSpotted(const QPoint &pos, int degree);
};

KDE Stack Overview and How It All Fit Together 25|

Signals and Slots Refresher (4/5)
aka The Qt Dev Bread and Butter

Beacon *lighthouse;
Ship *tanker;
connect(lighthouse, &Beacon::beamOfLight

tanker, &Ship::lightSpotted);

KDE Stack Overview and How It All Fit Together 26|

Signals and Slots Refresher (5/5)
aka The Qt Dev Bread and Butter

lighthouse tanker(20, 30)
10

 (20, 30)

void Beacon::rotate(int angle) {
 // ...
 m_angle += angle;
 emit beamOfLight(m_position,
 m_angle);
 // ...
}

void Ship::lightSpotted(QPoint pos) {
 // ...
 m_lastListPos = pos;
 // ...
}

connect(lighthouse, &Beacon::beamOfLight,
 tanker, &Ship::lightSpotted);

KDE Stack Overview and How It All Fit Together 27|

The Event Loop

Event Loop
"The System" Some

Object
Application

Object

Something
happened Determine

event

Dispatch
event

Emit
signal

More
Objects

Do stuff

Might
post events

• Ultimately all application code is triggered by an event loop

KDE Stack Overview and How It All Fit Together 27|

The Event Loop

Event Loop
"The System" Some

Object
Application

Object

Something
happened Determine

event

Dispatch
event

Emit
signal

More
Objects

Do stuff

Might
post events

• Ultimately all application code is triggered by an event loop

KDE Stack Overview and How It All Fit Together 28|

The Event Loop (Extended)

Timers Source

Socket
Notifiers
Source

Posted Events
Source

Event
Dispatcher

Application
Object

Event Filters

Receiver
Object

Event LoopDisplay System
Source

1: exec()

2: exec()

3: processEvents()

4: processEvents()

5: "poll" 6: dispatch 7: eventFilter()

if not filtered out
8: event()

• Disclaimer: This is still a simplification, the code has the details
• Situation may vary for user events depending on system setup, can come from:

– display system
– socket notifiers (typically for libinput and evdev)

• Keep in mind the application object has hooks, like startup/shutdown hooks
– Will be important later. . .

KDE Stack Overview and How It All Fit Together 28|

The Event Loop (Extended)

Timers Source

Socket
Notifiers
Source

Posted Events
Source

Event
Dispatcher

Application
Object

Event Filters

Receiver
Object

Event LoopDisplay System
Source

1: exec()

2: exec()

3: processEvents()

4: processEvents()

5: "poll" 6: dispatch 7: eventFilter()

if not filtered out
8: event()

• Disclaimer: This is still a simplification, the code has the details
• Situation may vary for user events depending on system setup, can come from:

– display system
– socket notifiers (typically for libinput and evdev)

• Keep in mind the application object has hooks, like startup/shutdown hooks
– Will be important later. . .

KDE Stack Overview and How It All Fit Together 29|

But wait. . .

• Where do the event dispatcher come from?
• And what about the display system?

• For sure it’s not all wired in at compile time. . .

KDE Stack Overview and How It All Fit Together 29|

But wait. . .

• Where do the event dispatcher come from?
• And what about the display system?

• For sure it’s not all wired in at compile time. . .

KDE Stack Overview and How It All Fit Together 30|

Qt Platform Abstraction (QPA)

• Platform abstraction layer
• Intent is to make it invisible to application developers
• Plugin system at two level of abstractions
• Most plugins are provided with Qt:

– QAndroidIntegrationPlugin
– QWindowsIntegrationPlugin
– QXcbIntegrationPlugin
– QWayland*IntegrationPlugin
– and more. . .

KDE Stack Overview and How It All Fit Together 31|

QPA classes

QPlatformIntegrationPlugin QPlatformIntegration QAbstractEventDispatcher

QPlatformWindow QPlatformTheme QPlatform*

QPlatformDialogHelper QPlatformSystemTrayIcon QPlatformIconEngine QPlatformMenuBar

creates creates

creates

creates

KDE Stack Overview and How It All Fit Together 32|

But wait. . .

Most plugins are provided with Qt

• The KDE file dialog isn’t implemented inside Qt, is it?
• Indeed not, it’s implemented using Qt
• We ship a plugin somewhere!?
• Yes we do. . .

– More about this later
– For now, make a mental note of this integration point

• Fun fact: our KDE Frameworks and Plasma code is both on top and below Qt
• I won’t dive into it here, but take a minute to think about KWin vs QPA

– “Interesting” problems all around

KDE Stack Overview and How It All Fit Together 32|

But wait. . .

Most plugins are provided with Qt

• The KDE file dialog isn’t implemented inside Qt, is it?
• Indeed not, it’s implemented using Qt
• We ship a plugin somewhere!?
• Yes we do. . .

– More about this later
– For now, make a mental note of this integration point

• Fun fact: our KDE Frameworks and Plasma code is both on top and below Qt
• I won’t dive into it here, but take a minute to think about KWin vs QPA

– “Interesting” problems all around

KDE Stack Overview and How It All Fit Together 32|

But wait. . .

Most plugins are provided with Qt

• The KDE file dialog isn’t implemented inside Qt, is it?
• Indeed not, it’s implemented using Qt
• We ship a plugin somewhere!?
• Yes we do. . .

– More about this later
– For now, make a mental note of this integration point

• Fun fact: our KDE Frameworks and Plasma code is both on top and below Qt
• I won’t dive into it here, but take a minute to think about KWin vs QPA

– “Interesting” problems all around

KDE Stack Overview and How It All Fit Together 32|

But wait. . .

Most plugins are provided with Qt

• The KDE file dialog isn’t implemented inside Qt, is it?
• Indeed not, it’s implemented using Qt
• We ship a plugin somewhere!?
• Yes we do. . .

– More about this later
– For now, make a mental note of this integration point

• Fun fact: our KDE Frameworks and Plasma code is both on top and below Qt
• I won’t dive into it here, but take a minute to think about KWin vs QPA

– “Interesting” problems all around

KDE Stack Overview and How It All Fit Together 32|

But wait. . .

Most plugins are provided with Qt

• The KDE file dialog isn’t implemented inside Qt, is it?
• Indeed not, it’s implemented using Qt
• We ship a plugin somewhere!?
• Yes we do. . .

– More about this later
– For now, make a mental note of this integration point

• Fun fact: our KDE Frameworks and Plasma code is both on top and below Qt
• I won’t dive into it here, but take a minute to think about KWin vs QPA

– “Interesting” problems all around

KDE Stack Overview and How It All Fit Together 32|

But wait. . .

Most plugins are provided with Qt

• The KDE file dialog isn’t implemented inside Qt, is it?
• Indeed not, it’s implemented using Qt
• We ship a plugin somewhere!?
• Yes we do. . .

– More about this later
– For now, make a mental note of this integration point

• Fun fact: our KDE Frameworks and Plasma code is both on top and below Qt
• I won’t dive into it here, but take a minute to think about KWin vs QPA

– “Interesting” problems all around

KDE Stack Overview and How It All Fit Together 32|

But wait. . .

Most plugins are provided with Qt

• The KDE file dialog isn’t implemented inside Qt, is it?
• Indeed not, it’s implemented using Qt
• We ship a plugin somewhere!?
• Yes we do. . .

– More about this later
– For now, make a mental note of this integration point

• Fun fact: our KDE Frameworks and Plasma code is both on top and below Qt
• I won’t dive into it here, but take a minute to think about KWin vs QPA

– “Interesting” problems all around

KDE Stack Overview and How It All Fit Together 32|

But wait. . .

Most plugins are provided with Qt

• The KDE file dialog isn’t implemented inside Qt, is it?
• Indeed not, it’s implemented using Qt
• We ship a plugin somewhere!?
• Yes we do. . .

– More about this later
– For now, make a mental note of this integration point

• Fun fact: our KDE Frameworks and Plasma code is both on top and below Qt
• I won’t dive into it here, but take a minute to think about KWin vs QPA

– “Interesting” problems all around

KDE Stack Overview and How It All Fit Together 32|

But wait. . .

Most plugins are provided with Qt

• The KDE file dialog isn’t implemented inside Qt, is it?
• Indeed not, it’s implemented using Qt
• We ship a plugin somewhere!?
• Yes we do. . .

– More about this later
– For now, make a mental note of this integration point

• Fun fact: our KDE Frameworks and Plasma code is both on top and below Qt
• I won’t dive into it here, but take a minute to think about KWin vs QPA

– “Interesting” problems all around

KDE Stack Overview and How It All Fit Together 32|

But wait. . .

Most plugins are provided with Qt

• The KDE file dialog isn’t implemented inside Qt, is it?
• Indeed not, it’s implemented using Qt
• We ship a plugin somewhere!?
• Yes we do. . .

– More about this later
– For now, make a mental note of this integration point

• Fun fact: our KDE Frameworks and Plasma code is both on top and below Qt
• I won’t dive into it here, but take a minute to think about KWin vs QPA

– “Interesting” problems all around

KDE Stack Overview and How It All Fit Together 33|

Your Typical Qt Widgets Application Architecture

view.ui

QWidget Widget
(Control)

View

Model

signal/slot

method
signal/slot

uic
generates

might
create

creates

XML C++

C++

C++

• Of course, this is not about a single
class of each type

• This pattern tends to be repeated over
and over in applications

• Imagine
– Numerous Model, Widget and View

classes
– Complex relationship between Model

and Widget classes
– Each Widget has only one View

though
- I know there are exceptions,

considering the most pervasive
scenario here

KDE Stack Overview and How It All Fit Together 34|

Your Typical Qt Widgets Application Architecture cont’d
The Control Part

class Widget : public QWidget {
Q_OBJECT

public:
explicit Widget(QWidget *parent = nullptr)

: ui{std::make_unique<Ui::View>()} {
ui->setupUi(this);
// Probably a bunch of connects to/from widgets from ui,
// slots likely manipulating m_model

}
void setModel(Model *model) { // Not always the case...

// Maybe a bunch of connects from model, slots impacting ui
m_model = model;

}
private:

std::unique_ptr<Ui::View> ui;
Model m_model = nullptr;

};

KDE Stack Overview and How It All Fit Together 35|

Your Typical Qt Widgets Application Architecture cont’d
Putting It All Together

auto model = new Model;
auto widget = new Widget;
widget->setModel(model); // Not always the case...
widget->show();

KDE Stack Overview and How It All Fit Together 36|

Your Typical Qt Quick Application Architecture

Proxy/Service
(Control)

View

Model

method

method
signal/slot

creates
and/or
uses

QML

C++

C++

property
binding

• This is still not about a single class of
each type

• This pattern tends to be repeated over
and over in applications

• Imagine
– Numerous Model and

Proxy/Service classes, numerous
View scripts

– Complex relationship between Model
and Proxy/Service classes

– Also complex relationship between
Proxy/Service classes and View
scripts

- Each View can easily use many
Proxy/Service

KDE Stack Overview and How It All Fit Together 37|

Your Typical Qt Quick Application Architecture cont’d
The Control Part

class Proxy : public QObject {
Q_OBJECT
Q_PROPERTY(QString modelId READ modelId WRITE setModelId

NOTIFY modelIdChanged)
Q_PROPERTY(QString value READ value WRITE setValue

NOTIFY valueChanged)
QML_ELEMENT

public:
using QObject::QObject

// Getter and setters for the properties above

private:
// Locate or create the model parts we need based on modelId
Model *model() const;

};

KDE Stack Overview and How It All Fit Together 38|

Your Typical Qt Quick Application Architecture cont’d
The View Part

import QtQuick 2.0 as QQ
// Assuming Proxy has been registered in the org.kde.app namespace
import org.kde.app 1.0 as App

QQ.Item {
App.Proxy {

id: proxy
modelId: "whatWeNeed"

}
QQ.Text {

anchors.centerIn: parent
text: proxy.value

}
}

KDE Stack Overview and How It All Fit Together 39|

Your Typical Qt Quick Application Architecture cont’d
Putting It All Together

QQmlApplicationEngine engine;
// Assuming the View.qml has been registered in the org.kde.app module
engine.loadFromModule("org.kde.app", "View");

KDE Stack Overview and How It All Fit Together 40|

Anatomies of Qt Applications

• The pattern used for QtWidgets based applications gets in the way of reusability
– Overfitted to the composition pattern of widgets
– It doesn’t have to be like this though

• The pattern used for QtQuick based applications is (IMHO) superior
– Less coupling between view and control
– Or at least the coupling goes in the “right direction”
– It’s in fact closer to the Model-View-Presenter (MVP) pattern

• It is of course not impossible to have a QtQuick like approach for widgets based
applications

– It’s really not often done only for historical reasons

• Qt Bindable Properties were supposed to make that easier on the C++ side, but. . .
– Nothing in QtWidgets use them
– Limited adoption in KDE Frameworks so far

KDE Stack Overview and How It All Fit Together 40|

Anatomies of Qt Applications

• The pattern used for QtWidgets based applications gets in the way of reusability
– Overfitted to the composition pattern of widgets
– It doesn’t have to be like this though

• The pattern used for QtQuick based applications is (IMHO) superior
– Less coupling between view and control
– Or at least the coupling goes in the “right direction”
– It’s in fact closer to the Model-View-Presenter (MVP) pattern

• It is of course not impossible to have a QtQuick like approach for widgets based
applications

– It’s really not often done only for historical reasons

• Qt Bindable Properties were supposed to make that easier on the C++ side, but. . .
– Nothing in QtWidgets use them
– Limited adoption in KDE Frameworks so far

KDE Stack Overview and How It All Fit Together 40|

Anatomies of Qt Applications

• The pattern used for QtWidgets based applications gets in the way of reusability
– Overfitted to the composition pattern of widgets
– It doesn’t have to be like this though

• The pattern used for QtQuick based applications is (IMHO) superior
– Less coupling between view and control
– Or at least the coupling goes in the “right direction”
– It’s in fact closer to the Model-View-Presenter (MVP) pattern

• It is of course not impossible to have a QtQuick like approach for widgets based
applications

– It’s really not often done only for historical reasons

• Qt Bindable Properties were supposed to make that easier on the C++ side, but. . .
– Nothing in QtWidgets use them
– Limited adoption in KDE Frameworks so far

KDE Stack Overview and How It All Fit Together 41|

Why am I covering this?

• It’s linked to the history section. . .
• We did a lot before QtQuick was around, so a lot of our stack comes from

applications following the QtWidgets typical patterns
• This is sometimes a limitation to reusing “business logic” in QtQuick applications
• Pay attention to what you pick and where it’s coming from
• If possible: retrofit something which exists into newer APIs instead of duplicating

features

KDE Stack Overview and How It All Fit Together 42|

Anatomy of a KDE Application

KDE Stack Overview and How It All Fit Together 43|

Anatomy of a Qt Application (again)

Used to be different, now it’s pretty much the same. . .

. . . maybe with more dependencies

KDE Stack Overview and How It All Fit Together 43|

Anatomy of a Qt Application (again)

Used to be different, now it’s pretty much the same. . .

. . . maybe with more dependencies

KDE Stack Overview and How It All Fit Together 44|

Questions and Answers

• Which are the sources of events for the event loop?
• Which object is responsible for dispatching events?
• What happens to events when they get dispatched?
• What is the relationship between events and application code?
• Which Qt mechanism is putting the event loop and its sources in place?
• What is the usual pattern for QtWidgets application?
• This pattern gets in the way of something, what is it?
• Which pattern the QtQuick pattern seen here is close from?

KDE Stack Overview and How It All Fit Together 44|

Questions and Answers

• Which are the sources of events for the event loop?
• Which object is responsible for dispatching events?
• What happens to events when they get dispatched?
• What is the relationship between events and application code?
• Which Qt mechanism is putting the event loop and its sources in place?
• What is the usual pattern for QtWidgets application?
• This pattern gets in the way of something, what is it?
• Which pattern the QtQuick pattern seen here is close from?

KDE Stack Overview and How It All Fit Together 44|

Questions and Answers

• Which are the sources of events for the event loop?
• Which object is responsible for dispatching events?
• What happens to events when they get dispatched?
• What is the relationship between events and application code?
• Which Qt mechanism is putting the event loop and its sources in place?
• What is the usual pattern for QtWidgets application?
• This pattern gets in the way of something, what is it?
• Which pattern the QtQuick pattern seen here is close from?

KDE Stack Overview and How It All Fit Together 44|

Questions and Answers

• Which are the sources of events for the event loop?
• Which object is responsible for dispatching events?
• What happens to events when they get dispatched?
• What is the relationship between events and application code?
• Which Qt mechanism is putting the event loop and its sources in place?
• What is the usual pattern for QtWidgets application?
• This pattern gets in the way of something, what is it?
• Which pattern the QtQuick pattern seen here is close from?

KDE Stack Overview and How It All Fit Together 44|

Questions and Answers

• Which are the sources of events for the event loop?
• Which object is responsible for dispatching events?
• What happens to events when they get dispatched?
• What is the relationship between events and application code?
• Which Qt mechanism is putting the event loop and its sources in place?
• What is the usual pattern for QtWidgets application?
• This pattern gets in the way of something, what is it?
• Which pattern the QtQuick pattern seen here is close from?

KDE Stack Overview and How It All Fit Together 44|

Questions and Answers

• Which are the sources of events for the event loop?
• Which object is responsible for dispatching events?
• What happens to events when they get dispatched?
• What is the relationship between events and application code?
• Which Qt mechanism is putting the event loop and its sources in place?
• What is the usual pattern for QtWidgets application?
• This pattern gets in the way of something, what is it?
• Which pattern the QtQuick pattern seen here is close from?

KDE Stack Overview and How It All Fit Together 44|

Questions and Answers

• Which are the sources of events for the event loop?
• Which object is responsible for dispatching events?
• What happens to events when they get dispatched?
• What is the relationship between events and application code?
• Which Qt mechanism is putting the event loop and its sources in place?
• What is the usual pattern for QtWidgets application?
• This pattern gets in the way of something, what is it?
• Which pattern the QtQuick pattern seen here is close from?

KDE Stack Overview and How It All Fit Together 44|

Questions and Answers

• Which are the sources of events for the event loop?
• Which object is responsible for dispatching events?
• What happens to events when they get dispatched?
• What is the relationship between events and application code?
• Which Qt mechanism is putting the event loop and its sources in place?
• What is the usual pattern for QtWidgets application?
• This pattern gets in the way of something, what is it?
• Which pattern the QtQuick pattern seen here is close from?

KDE Stack Overview and How It All Fit Together 45|

Key Takeaways

• The “event loop” is in fact quite a few objects in interaction
• We have quite a few source of events
• The application object is central to the event dispatch mechanism
• The application object provides us hooks (still mysterious for now, but important)
• QPA has a strong say in how the event loop is wired
• QPA is also an important mechanism for us to plug our own platform behaviors
• Our QPA use is fairly unique since it is “Qt based all the way”

• To maximize reusability of “business logic” aim to structure your application
similarly to a QtQuick application, even if it uses QtWidgets

• There’s really not anything specific anymore to applications coming from KDE
apart from their dependencies

KDE Stack Overview and How It All Fit Together 46|

KDE Frameworks

KDE Stack Overview and How It All Fit Together 47|

Objectives

• Take a whirlwind tour of KDE Frameworks
• Get a feel of the staggering amount of features available
• Understand better how it is structured overall
• Highlight some of the integration points
• See how some of those integration points relate to Plasma

KDE Stack Overview and How It All Fit Together 48|

All About Managing Dependencies
Of Tiers and Types

"Look & Feel"
+

Consistency
Tier 4

Solution
Tier 1

Integration
Tier 1

Functional
Tier 1

Solution
Tier 2

Integration
Tier 3

Functional
Tier 3

Solution
Tier 3

Integration
Tier 2

Functional
Tier 2

• Tiers
1. Depends only on Qt and system libraries
2. Depends on Tier 1 and its dependencies
3. Depends on anything in Tier 3 or below
4. Depends on anything, has a purpose and

almost no API
• Types

– Functional: “Qt Add-ons” with no runtime
dependencies

– Integration: optional runtime dependency,
aiming at integrating with a given platform

– Solution: mandatory runtime dependency,
part of the design and added value

- e.g. scalability, resource sharing,
resilience

• They are both part of the information listed
in the metainfo.yaml files of our
frameworks

KDE Stack Overview and How It All Fit Together 49|

Disclaimers

• This section will obviously be a bit more of a catalog
• This is not an exhaustive training covering all the APIs. . .

– Otherwise, we’d have to cover more than 70 frameworks
– Also expect some classes to be barely described

- Otherwise, we’d have several days worth of content
- We’ll make sure to focus on the ones we consider very important

• Brace yourselves!

KDE Stack Overview and How It All Fit Together 49|

Disclaimers

• This section will obviously be a bit more of a catalog
• This is not an exhaustive training covering all the APIs. . .

– Otherwise, we’d have to cover more than 70 frameworks
– Also expect some classes to be barely described

- Otherwise, we’d have several days worth of content
- We’ll make sure to focus on the ones we consider very important

• Brace yourselves!

KDE Stack Overview and How It All Fit Together 49|

Disclaimers

• This section will obviously be a bit more of a catalog
• This is not an exhaustive training covering all the APIs. . .

– Otherwise, we’d have to cover more than 70 frameworks
– Also expect some classes to be barely described

- Otherwise, we’d have several days worth of content
- We’ll make sure to focus on the ones we consider very important

• Brace yourselves!

KDE Stack Overview and How It All Fit Together 50|

Tier 1

Remember, all of the following frameworks build straight on top of Qt

KDE Stack Overview and How It All Fit Together 51|

Tier 1: KCoreAddons

• KSharedDataCache allows to cache data and share it across processes
• KAutoSaveFile provides temporary files used to store unsaved data (file open for

editing), also allows for the recovery of old autosaved data
• KProcess extends QProcess with extra features to ease management of the

output channels and environment
• KAboutData stores information about a program (version number, authors, licence,

home page. . .)
• KFuzzyMatcher provides SublimeText like fuzzy matching
• KUser represents system users (works on Windows too)
• KPluginFactory and KPluginMetaData for creating and loading plugins
• KMacroExpander provides convenient macro substitution in strings

QHash<QString,QString> map;
map.insert("url", "/tmp/myfile.txt");
map.insert("name", "My File");
QString s = "Title: %{url}-%name";
s = KMacroExpander::expandMacros(s, map);

KDE Stack Overview and How It All Fit Together 52|

Tier 1: KCoreAddons, Focus on Jobs

class CreateResourceJob : public KJob {
Q_OBJECT

public:
using KJob::KJob;
void setUrl(const QUrl &url);

void start() override {
QMetaObject::invokeMethod(this, &CreateResourceJob::doStart,

Qt::QueuedConnection);
}

private:
void doStart();
void onFinished(bool success);

QUrl m_url;
};

KDE Stack Overview and How It All Fit Together 53|

Tier 1: KCoreAddons, Focus on Jobs

void CreateResourceJob::doStart() {
// Do something async, like use QNAM
connect(..., this, &CreateResourceJob::onFinished);

}

void CreateResourceJob::onFinished(bool success) {
if (!success) {

setError(-1);
setErrorText("Oops");

}
emitResult();

}

KDE Stack Overview and How It All Fit Together 54|

Tier 1: KCoreAddons, Focus on Jobs cont’d

auto job = new CreateResourceJob(parent);
job->setUrl(...);
connect(job, &CreateResourceJob::result, [](Kjob *job) { ... });

job->setUiDelegate(...);
jobTracker->registerJob(job);
job->start();

• All the necessary to use a job is on that slide
• We also have KCompositeJob allowing to build jobs managing other jobs, job

queues etc.
• We’ll come back to UI delegates and job trackers but they allow respectively

– To interact with the user during the job lifetime (ask questions, display errors. . .)
– To display job progress

KDE Stack Overview and How It All Fit Together 55|

Tier 1: KWidgetsAddons

• KStyleExtensions allows to declare extension points for KStyle
– More about this later

• KMessageDialog displays messages to the user, supports notifications and “don’t
show again” feature

• KRatingWidget displays a rating value (row of stars or other pixmap)
• KColumnResizer ensures columns are of the same width across layouts
• KDualAction provides an action with two states (texts and icons)
• KActionMenu is an action providing a menu of other actions
• KBusyIndicatorWidget is a spinning icon indicating we’re busy
• KCapacityBar shows the level of usage of a resource (similar to but not quite a

progress bar)
• KFontRequester allows the user to pick a font

KDE Stack Overview and How It All Fit Together 56|

Tier 1: KWidgetsAddons cont’d

• KNewPasswordWidget and KNewPasswordDialog allow the user to enter a new
password (needs to be entered twice and they give a hint on the password strength)

• KPasswordLineEdit allows the user to input a password and to get it displayed
• KColorCombo displays a combo box to pick colors
• KDateComboBox displays a combo box to pick dates
• KDatePicker displays a calendar to select a date
• KUrlLabel is a replacement for QLabel when you need to display URLs
• KRecentFilesMenu provides a menu for recently opened files
• KPageView and KPageDialog provides multiple pages support in a view, very

configurable you can pick the type of rendering (list, tree, tabs) to switch between
the pages

KDE Stack Overview and How It All Fit Together 57|

Tier 1: KConfig

auto config = KSharedConfig::openConfig("settingsrc");
KConfigGroup group(config, "Appearance");

const auto color = group.readEntry("AlertColor", QColor(Qt::red));

group.writeEntry("AlertFont", QFont("Hack", 12));

• Allows to easily dissociate actual settings from application state
– KSharedConfig::openConfig() vs KSharedConfig::openStateConfig()

• Supports nested groups
• Supports config cascading (convenient for sysadmins)
• Allows to lock settings or provide defaults via the cascading

– Also provides the KAuthorized namespace to know if sysadmins decided to lock
down an action or a control module (more on this later)

KDE Stack Overview and How It All Fit Together 58|

Tier 1: KConfig Extended (KConfigXT)

<kcfg>
<kcfgfile name="settingsrc"/>
<group name="Appearance">

<entry key="AlertColor" type="Color">
<default>255, 255, 255</default>

</entry>
<entry key="AlertFont" type="Font">
</entry>

</group>
</kcfg>

• Most Qt data types supported
• The XML syntax allows for hints to be used in the GUI (label, whatsthis)

KDE Stack Overview and How It All Fit Together 59|

Tier 1: KConfig Extended (KConfigXT) cont’d

Settings settings;
const auto color = settings.alertColor();
settings.setAlertFont(QFont("Hack", 12));

• Code generated using kconfig_compiler
– CMake macros provided
– Type safe configuration with opt-in change notification

• Provides all the necessary hooks for introspecting the settings
• Config values state management

– Is it set to the default value?
– Reset it to the default value

• It’s all KConfig under the hood so we benefit from all its features as well

KDE Stack Overview and How It All Fit Together 60|

Tier 1: Kirigami

Kirigami.ApplicationWindow {
id: root
globalDrawer: Kirigami.GlobalDrawer {

title: "Global Actions"
titleIcon: "icon-name"
actions: [...]

}
contextDrawer: Kirigami.ContextDrawer { }
pageStack.initialPage: mainPageComponent

Component {
id: mainPageComponent
Kirigami.ScrollablePage {

...
}

}
}

KDE Stack Overview and How It All Fit Together 61|

Tier 1: Kirigami cont’d

• UIs using Kirigami are adaptable or “convergent”
– Work nicely both on mobile and desktop
– Follows the KDE Human Interface Guidelines

• Provide quite a few components:
– Windows, Actions and Drawers
– Page system with routing
– ScrollablePage
– Card, CardListView, CardGridView
– And more. . .

KDE Stack Overview and How It All Fit Together 62|

Tier 1: And a Few More

• KArchive fullfills for all your archives and compression needs
• KCalendarCore allows to manipulate iCal data
• KDBusAddons provides extra helpers for interprocess communication and IPC locks
• KI18n is the base of our translation system, based on gettext and very advanced
• KItemModels provides lots of useful proxy modesl
• KWindowSystem allows to interact with certain features of the window manager

(exact availability of the features depend on the platform)
• Solid allows to query the system for available hardware, find mountpoints. . .
• ThreadWeaver provides a complex multithreaded job queue, it allows the creation

of complex flow graphs

KDE Stack Overview and How It All Fit Together 63|

Tier 2

Remember, all of the following frameworks build on top of Qt + Tier 1

KDE Stack Overview and How It All Fit Together 64|

Tier 2: KJobWidgets
Depends on KCoreAddons and KWidgetsAddons

• KDialogJobUiDelegate provides dialogs for interacting with a job
• KNotificationJobUiDelegate provides notifications for interacting with a job
• KWidgetJobTracker allows to display jobs progression in a widget
• KStatusBarJobTracker allows to display jobs progression in a widget suitable for

embedding in a status bar
• KUiServer(V2)JobTracker allows to display jobs progression through the DBus

service exposed by Plasma

KDE Stack Overview and How It All Fit Together 65|

Tier 2: KNotifications
Depends on KWindowSystem, KConfig and KCoreAddons

• Cross platform library for creating popup notifications
• Requires a config file to be shipped by the application to describe its events
• KNotification allows to create a notification to be displayed corresponding to an

event
• KNotifyConfig exposes the configuration for an event

KNotification *notification = new KNotification("contactOnline");
notification->setText(i18n("<i>%1</i> is now online", contact->name());
notification->setPixmap(contact->pixmap());
KNotificationAction *action = notification->addAction(i18n("Open chat"));
connect(action, &KNotification::activated,

contact, &Contact::slotOpenChat);
notification->sendEvent();

KDE Stack Overview and How It All Fit Together 66|

Tier 2: KUnitConversion
Depends on KI18n

• Simple API
• Supports lots of fields:

– Currency (yes, with daily updates of the conversion rates)
– Acceleration
– Angle
– Area
– Binary Data
– Density
– Length
– Temperature
– Voltage
– And more. . .

KDE Stack Overview and How It All Fit Together 67|

Tier 2: KPackage
Depends on KArchive, KI18n and KCoreAddons

• Allows users to install and load packages of non binary content
– Typically scripted extensions or graphic assets

• KPackage::Package represents a package of a given type
• KPackage::PackageStructure describes the allowed files and folders in a

package type, shipped as plugins
• KPackage::PackageLoader find and loads packages of a given package type
• This is also the distribution format for Plasma extensions

KDE Stack Overview and How It All Fit Together 68|

Tier 3

This is where the dependencies get harder to manage!

KDE Stack Overview and How It All Fit Together 69|

Tier 3: KCMUtils

• KCModule provides a base class for configuration modules
• KCMultiDialog provides a settings dialog displaying a set a KCModules
• KPluginWidget allows to select which plugins to load in an application and to

configure them
• KCModuleData provides an extension to KCModule to know the state of a module

without loading the whole GUI
• Also contains the necessary to make QML based KCModule
• KQuickConfigModule and KQuickManagedConfigModule allow to implement

the backend part of a QML based KCM
• org.kde.kcmutils on the QML side provides convenient elements to implement

the frontend part of a QML based KCM
– SimpleKCM for the root element
– GridViewKCM for the root element in config module mostly exposing a grid of items

KDE Stack Overview and How It All Fit Together 69|

Tier 3: KCMUtils

• KCModule provides a base class for configuration modules
• KCMultiDialog provides a settings dialog displaying a set a KCModules
• KPluginWidget allows to select which plugins to load in an application and to

configure them
• KCModuleData provides an extension to KCModule to know the state of a module

without loading the whole GUI
• Also contains the necessary to make QML based KCModule
• KQuickConfigModule and KQuickManagedConfigModule allow to implement

the backend part of a QML based KCM
• org.kde.kcmutils on the QML side provides convenient elements to implement

the frontend part of a QML based KCM
– SimpleKCM for the root element
– GridViewKCM for the root element in config module mostly exposing a grid of items

KDE Stack Overview and How It All Fit Together 69|

Tier 3: KCMUtils

• KCModule provides a base class for configuration modules
• KCMultiDialog provides a settings dialog displaying a set a KCModules
• KPluginWidget allows to select which plugins to load in an application and to

configure them
• KCModuleData provides an extension to KCModule to know the state of a module

without loading the whole GUI
• Also contains the necessary to make QML based KCModule
• KQuickConfigModule and KQuickManagedConfigModule allow to implement

the backend part of a QML based KCM
• org.kde.kcmutils on the QML side provides convenient elements to implement

the frontend part of a QML based KCM
– SimpleKCM for the root element
– GridViewKCM for the root element in config module mostly exposing a grid of items

KDE Stack Overview and How It All Fit Together 70|

Tier 3: KConfigWidgets

• KConfigDialog completes KPageDialog with the logic necessary for making
settings dialog (state management of the buttons, loading, saving. . .)

• KConfigViewStateSaver allows to save/restore item views state in KConfig
• KCommandBar provides a hud style menu
• KHamburgerMenu allows to replace the menu bar when necessary

KDE Stack Overview and How It All Fit Together 71|

Tier 3: KXmlGui

• Encodes lots of rules of what we consider a “KDE application on the desktop”
• Automatically respects KAuthorized hints
• KAboutApplicationDialog provides the standard about dialog
• KActionCollection provides a container for named actions
• KXmlGuiWindow provides a top level window with action management

– It gives all the necessary to encode the menu structure and the toolbars
– It let the user edit the toolbars

• KXMLGUIFactory and KXMLGUIClient provide the same features but without
being tied to a given window

– Each client provides actions (KActionCollection) and some rules on how to insert
actions in the GUI (XML format)

– The factory plugs the action into container widgets via KXMLGUIBuilder
– It is possible to apply more than one client, effectively merging their actions in a single

structure

KDE Stack Overview and How It All Fit Together 72|

Tier 3: KXmlGui cont’d
KActionConflictDetector: an example of enforcing rules

class KActionConflictDetector : public QObject {
// ...

bool eventFilter(QObject *watched, QEvent *event) override {
if (event->type() == QEvent::Shortcut &&

qobject_cast<QAction *>(watched)) {
QShortcutEvent *se = static_cast<QShortcutEvent *>(event);
if (se->isAmbiguous()) {

KMessageBox::information(...);
return true;

}
}
return QObject::eventFilter(watched, event);

}
};

KDE Stack Overview and How It All Fit Together 73|

Tier 3: KXmlGui cont’d
KActionConflictDetector: injection

void _k_installConflictDetector() {
QCoreApplication *app = QCoreApplication::instance();
app->installEventFilter(new KActionConflictDetector(app));

}

Q_COREAPP_STARTUP_FUNCTION(_k_installConflictDetector)

• This will work as soon as you link against KXmlGui
• Our QPlatformTheme plugin links against KXmlGui

KDE Stack Overview and How It All Fit Together 73|

Tier 3: KXmlGui cont’d
KActionConflictDetector: injection

void _k_installConflictDetector() {
QCoreApplication *app = QCoreApplication::instance();
app->installEventFilter(new KActionConflictDetector(app));

}

Q_COREAPP_STARTUP_FUNCTION(_k_installConflictDetector)

• This will work as soon as you link against KXmlGui
• Our QPlatformTheme plugin links against KXmlGui

KDE Stack Overview and How It All Fit Together 73|

Tier 3: KXmlGui cont’d
KActionConflictDetector: injection

void _k_installConflictDetector() {
QCoreApplication *app = QCoreApplication::instance();
app->installEventFilter(new KActionConflictDetector(app));

}

Q_COREAPP_STARTUP_FUNCTION(_k_installConflictDetector)

• This will work as soon as you link against KXmlGui
• Our QPlatformTheme plugin links against KXmlGui

KDE Stack Overview and How It All Fit Together 74|

Tier 3: KIO

• Provides network transparent access to files and data
• Also provides facilities to launch applications or open files (local or distant)
• Asynchronous API via jobs
• Plugin system to implement the protocols

– File
– HTTP
– SMB
– SFTP
– MTP

• Allows to make virtual filesystems too
– Trash
– Timeline
– Desktop
– Applications
– AudioCD

• Many of the workers are in kio-extras

KDE Stack Overview and How It All Fit Together 75|

Tier 3: KIO cont’d

auto job = KIO::listDir(url);

connect(job, &KIO::ListJob::entries, [=](
KIO::Job *, const KIO::UDSEntryList &entries) {
for (const auto &entry : entries) {

KFileItem file(entry, url, false, true);
qDebug() << "Seen entry:" << file.text()

<< file.url().toDisplayString();
}

});

connect(job, &KJob::result, [](KJob *job) {
if (job->error()) {

job->uiDelegate()->showErrorMessage();
}

});

KDE Stack Overview and How It All Fit Together 76|

Tier 3: KIO cont’d

• KIO::Job subclasses are auto-start
• If linking against KIOWidgets they automatically

– Get a UI delegate with extensions
- e.g. deals with asking the user to rename a file if needed

– Get a job tracker
- Dynamically dispatches to KWidgetJobTracker or KUiServerJobTracker
- Depends if the application is in a Plasma session or not

static void registerJobUiDelegate() {
KIO::setDefaultJobUiDelegateFactory(globalUiDelegateFactory());
KIO::setDefaultJobUiDelegateExtension(globalUiDelegate());

}

Q_CONSTRUCTOR_FUNCTION(registerJobUiDelegate)

KDE Stack Overview and How It All Fit Together 77|

Tier 3: KIO cont’d

• We have loads of different jobs
• KIO also comes with plenty of widgets

– Pretty much all you need to navigate filesystems

This framework is very large, make sure to check its API documentation

KDE Stack Overview and How It All Fit Together 77|

Tier 3: KIO cont’d

• We have loads of different jobs
• KIO also comes with plenty of widgets

– Pretty much all you need to navigate filesystems

This framework is very large, make sure to check its API documentation

KDE Stack Overview and How It All Fit Together 78|

The Mythical Tier 4

This provides mostly no API, it’s mainly here to tie some pieces together

KDE Stack Overview and How It All Fit Together 79|

Tier 4: Framework Integration Plugin
"Don’t ask again" requires KConfig

class KMessageBoxDontAskAgainInterface
{
public:

// ...
virtual bool shouldBeShownYesNo(const QString &dontShowAgainName,

KMessageBox::ButtonCode &result) = 0;
virtual void saveDontShowAgainYesNo(const QString &dontShowAgainName,

KMessageBox::ButtonCode result) = 0;
virtual void enableAllMessages() = 0;
virtual void enableMessage(const QString &dontShowAgainName) = 0;
virtual void setConfig(KConfig *) = 0;
// ...

};

• The dontShowAgainName is passed to the public API of KMessageBox or
KMessageDialog

KDE Stack Overview and How It All Fit Together 80|

Tier 4: Framework Integration Plugin
KMessageDialog interacts with the notification system

class KMessageBoxNotifyInterface
{
public:

// ...
virtual void sendNotification(QMessageBox::Icon notificationType,

const QString &message,
QWidget *parent) = 0;

};

• KMessageBox and KMessageDialog have API allowing to enable/disable
notifications for specific messages

KDE Stack Overview and How It All Fit Together 81|

Tier 4: KStyle

• Remember in KWidgetsAddons things like KCapacityBar?
• They need styles to know about them for better tuning. . .

– . . . but QStyle can’t know them
• That’s the main reason for KStyle (and KStyleExtensions) existence

KDE Stack Overview and How It All Fit Together 82|

Tier 4: KStyle
In a Style Inheriting From ‘KStyle‘

• For instance Breeze contains code like this to initialize a member variable:

CE_CapacityBar(newControlElement(QStringLiteral("CE_CapacityBar")))

• And inside the rendering path:

if (element == CE_CapacityBar) {
// ...

}

KDE Stack Overview and How It All Fit Together 83|

Tier 4: KStyle
In the Widget Constructor

KCapacityBar::KCapacityBar(KCapacityBar::DrawTextMode drawTextMode,
QWidget *parent)

: QWidget(parent)
, d(new KCapacityBarPrivate(drawTextMode))

{
d->ce_capacityBar =

KStyleExtensions::customControlElement("CE_CapacityBar", this);
}

KDE Stack Overview and How It All Fit Together 84|

Tier 4: KStyle
In the Widget Paint Code

void KCapacityBar::drawCapacityBar(QPainter *p, const QRect &rect) const
{

if (d->ce_capacityBar) {
QStyleOptionProgressBar opt;
opt.initFrom(this);
// ...
style()->drawControl(d->ce_capacityBar, &opt, p, this);
return;

}

// very long manual fallback with straight QPainter use...
}

KDE Stack Overview and How It All Fit Together 85|

Friendly Reminders

• This was really a quick and biased tour
• Go to the API documentation, you’ll find many more
• I tried to focus on points which would either

– Give a feel of how many features it all packs, or
– Would ensure we’d bump into some lesser obvious integration points

KDE Stack Overview and How It All Fit Together 85|

Friendly Reminders

• This was really a quick and biased tour
• Go to the API documentation, you’ll find many more
• I tried to focus on points which would either

– Give a feel of how many features it all packs, or
– Would ensure we’d bump into some lesser obvious integration points

KDE Stack Overview and How It All Fit Together 85|

Friendly Reminders

• This was really a quick and biased tour
• Go to the API documentation, you’ll find many more
• I tried to focus on points which would either

– Give a feel of how many features it all packs, or
– Would ensure we’d bump into some lesser obvious integration points

KDE Stack Overview and How It All Fit Together 85|

Friendly Reminders

• This was really a quick and biased tour
• Go to the API documentation, you’ll find many more
• I tried to focus on points which would either

– Give a feel of how many features it all packs, or
– Would ensure we’d bump into some lesser obvious integration points

KDE Stack Overview and How It All Fit Together 85|

Friendly Reminders

• This was really a quick and biased tour
• Go to the API documentation, you’ll find many more
• I tried to focus on points which would either

– Give a feel of how many features it all packs, or
– Would ensure we’d bump into some lesser obvious integration points

KDE Stack Overview and How It All Fit Together 86|

Questions and Answers

• What is the tier and type information attached to a framework?
• Which mechanism do we use for lower tier frameworks to benefit from features of

higher tier frameworks?
• Which mechanism do we use to inject behavior in a Qt app which uses a KDE

Framework?
• Which type do we use for asynchronous operations?
• If I need network transparent operations which framework do I use?
• If I need to distribute scripted content for my application, which framework do I

use?

KDE Stack Overview and How It All Fit Together 86|

Questions and Answers

• What is the tier and type information attached to a framework?
• Which mechanism do we use for lower tier frameworks to benefit from features of

higher tier frameworks?
• Which mechanism do we use to inject behavior in a Qt app which uses a KDE

Framework?
• Which type do we use for asynchronous operations?
• If I need network transparent operations which framework do I use?
• If I need to distribute scripted content for my application, which framework do I

use?

KDE Stack Overview and How It All Fit Together 86|

Questions and Answers

• What is the tier and type information attached to a framework?
• Which mechanism do we use for lower tier frameworks to benefit from features of

higher tier frameworks?
• Which mechanism do we use to inject behavior in a Qt app which uses a KDE

Framework?
• Which type do we use for asynchronous operations?
• If I need network transparent operations which framework do I use?
• If I need to distribute scripted content for my application, which framework do I

use?

KDE Stack Overview and How It All Fit Together 86|

Questions and Answers

• What is the tier and type information attached to a framework?
• Which mechanism do we use for lower tier frameworks to benefit from features of

higher tier frameworks?
• Which mechanism do we use to inject behavior in a Qt app which uses a KDE

Framework?
• Which type do we use for asynchronous operations?
• If I need network transparent operations which framework do I use?
• If I need to distribute scripted content for my application, which framework do I

use?

KDE Stack Overview and How It All Fit Together 86|

Questions and Answers

• What is the tier and type information attached to a framework?
• Which mechanism do we use for lower tier frameworks to benefit from features of

higher tier frameworks?
• Which mechanism do we use to inject behavior in a Qt app which uses a KDE

Framework?
• Which type do we use for asynchronous operations?
• If I need network transparent operations which framework do I use?
• If I need to distribute scripted content for my application, which framework do I

use?

KDE Stack Overview and How It All Fit Together 86|

Questions and Answers

• What is the tier and type information attached to a framework?
• Which mechanism do we use for lower tier frameworks to benefit from features of

higher tier frameworks?
• Which mechanism do we use to inject behavior in a Qt app which uses a KDE

Framework?
• Which type do we use for asynchronous operations?
• If I need network transparent operations which framework do I use?
• If I need to distribute scripted content for my application, which framework do I

use?

KDE Stack Overview and How It All Fit Together 87|

Key Takeaways

• The “tier” of a framework is about its link time dependencies complexity
• The “type” of a framework is a mix of the amount of runtime dependencies and

intended role
• There’s pretty much a KDE Framework for anything, for sure all the common tasks

needed to build lots of different types of applications are covered
• We have hidden plugins to inject features in frameworks behind the scene
• We use the application object hooks to inject behavior from a framework into an

application which simply links to it

KDE Stack Overview and How It All Fit Together 88|

KDE Plasma

KDE Stack Overview and How It All Fit Together 89|

Objectives

• Introduce LibPlasma and how we go from there to actually building an environment
for the user

• Have an idea of the important components distributed in our workspaces
• Understand how we reinject behavior in all the Qt application from the Plasma

environment
• Have a rough idea of how KWin is structured and how it differs between X11 and

Wayland
• Know how to extend System Settings

KDE Stack Overview and How It All Fit Together 90|

LibPlasma
A Component Model for Workspaces

Corona Containment Applet
1 *1 *

• Plasma::Corona represents the whole workspace or “the scene”
– Defines the basic rules of the workspace including the overall layout
– Manages the Containments in a screen and activity aware fashion
– This is the one controlling the edit mode being enabled or not

• Plasma::Containment represents areas within the corona
– Defines how its content is laid out
– Basically can be either desktop or panel

- There are a couple more types I’ll happily ignore here
– Form factor and activity aware

KDE Stack Overview and How It All Fit Together 91|

LibPlasma cont’d
A Component Model for Workspaces

Corona Containment Applet
1 *1 *

• Plasma::Applet represents a “widget” (also sometimes named “plasmoid”) the
user can interact with

– Applets provide the bulk of the behavior and interaction available
– Form factor aware

• Plasma::Theme provides all the theming information to the other classes
– Color scheme
– Fonts
– Where to load images from

KDE Stack Overview and How It All Fit Together 92|

LibPlasma cont’d
A Component Model for Workspaces

Corona Containment Applet
1 *1 *

• They are all loaded using KPackage
– C++ API is mainly here to develop your shell
– The packages are all QML based

• The framework also comes with a set of items to use on the QML side
– Most notably two important modules

- org.kde.plasma.core which among other things provides convenience to load SVGs
from a theme (includes caching, coloring, rendering of sub-elements)

- org.kde.plasma.components provides a QtQuickControls2 implementation backed by
SVG based primitives

– Applet authors should use them to ensure a coherent look and feel

KDE Stack Overview and How It All Fit Together 93|

The KDE Workspaces

• Services necessary to build a workspace
– Application management
– Hardware interaction (disks, power, network, bluetooth, thunderbolt)
– System status

• Lots of configuration modules and how to navigate them (systemsettings)
• Styles covering the whole session (Grub, Plymouth, SDDM, Plasma, QtWidgets,

QtQuickControls2, GTK+)
– They all need to be coordinated!

• Features for the users in term of applets
• A shell and a window manager to tie it all up together
• Integration plugins

– Remember some of the extension points we’ve seen before in KDE Frameworks and Qt

• Did any of the above say desktop only?
• So multiply some of that for each form factor we choose to support

– Mainly shell and containments
– Thanks to our tech the rest mostly applies as is on all form factors

KDE Stack Overview and How It All Fit Together 93|

The KDE Workspaces

• Services necessary to build a workspace
– Application management
– Hardware interaction (disks, power, network, bluetooth, thunderbolt)
– System status

• Lots of configuration modules and how to navigate them (systemsettings)
• Styles covering the whole session (Grub, Plymouth, SDDM, Plasma, QtWidgets,

QtQuickControls2, GTK+)
– They all need to be coordinated!

• Features for the users in term of applets
• A shell and a window manager to tie it all up together
• Integration plugins

– Remember some of the extension points we’ve seen before in KDE Frameworks and Qt

• Did any of the above say desktop only?
• So multiply some of that for each form factor we choose to support

– Mainly shell and containments
– Thanks to our tech the rest mostly applies as is on all form factors

KDE Stack Overview and How It All Fit Together 94|

Qt Platform Abstraction is Back

Remember I mentioned we shipped a QPA plugin early on?

Time to look more into it. . .

KDE Stack Overview and How It All Fit Together 94|

Qt Platform Abstraction is Back

Remember I mentioned we shipped a QPA plugin early on?

Time to look more into it. . .

KDE Stack Overview and How It All Fit Together 95|

QPA Classes, A Reminder

QPlatformIntegrationPlugin QPlatformIntegration QAbstractEventDispatcher

QPlatformWindow QPlatformTheme QPlatform*

QPlatformDialogHelper QPlatformSystemTrayIcon QPlatformIconEngine QPlatformMenuBar

creates creates

creates

creates

• For sure we don’t want to redo all the work of the X11 or Wayland QPA plugins!
• Indeed we don’t. . . there’s yet another trick

KDE Stack Overview and How It All Fit Together 95|

QPA Classes, A Reminder

QPlatformIntegrationPlugin QPlatformIntegration QAbstractEventDispatcher

QPlatformWindow QPlatformTheme QPlatform*

QPlatformDialogHelper QPlatformSystemTrayIcon QPlatformIconEngine QPlatformMenuBar

creates creates

creates

creates

• For sure we don’t want to redo all the work of the X11 or Wayland QPA plugins!
• Indeed we don’t. . . there’s yet another trick

KDE Stack Overview and How It All Fit Together 96|

QPlatformTheme Creation Revisited

platform
theme plugin

found

no platform
theme plugin

found

:QGuiApplication

create via plugin

construct

:QPlatformIntegration

create via plugin

themeNames()

names

:QPlatformTheme

createPlatformTheme()

create

Plasma

KDE Stack Overview and How It All Fit Together 97|

Plasma Integration

• Provides our KDE Platform Theme
• Links against a whole lot of KDE Frameworks

– KIO
– KConfig
– KNotifications
– KIconThemes
– and more. . .

• And remember there’s quite some magic we do just by linking!
• Features

– Integrates menu bars with our global menu
– Integrates system tray icons with KStatusNotifierItem
– Overrides the file dialog with our own implementation
– Replaces the stock QIconEngine with our own KIconEngine (respects user theme,

provides caching. . .)
– Overrides default key bindings based on KStandardShortcut settings
– Injects the default palette from the settings
– Forces our own QtQuickControls2 theme

• Everything you need to make a Qt application look native in Plasma

KDE Stack Overview and How It All Fit Together 97|

Plasma Integration

• Provides our KDE Platform Theme
• Links against a whole lot of KDE Frameworks

– KIO
– KConfig
– KNotifications
– KIconThemes
– and more. . .

• And remember there’s quite some magic we do just by linking!
• Features

– Integrates menu bars with our global menu
– Integrates system tray icons with KStatusNotifierItem
– Overrides the file dialog with our own implementation
– Replaces the stock QIconEngine with our own KIconEngine (respects user theme,

provides caching. . .)
– Overrides default key bindings based on KStandardShortcut settings
– Injects the default palette from the settings
– Forces our own QtQuickControls2 theme

• Everything you need to make a Qt application look native in Plasma

KDE Stack Overview and How It All Fit Together 97|

Plasma Integration

• Provides our KDE Platform Theme
• Links against a whole lot of KDE Frameworks

– KIO
– KConfig
– KNotifications
– KIconThemes
– and more. . .

• And remember there’s quite some magic we do just by linking!
• Features

– Integrates menu bars with our global menu
– Integrates system tray icons with KStatusNotifierItem
– Overrides the file dialog with our own implementation
– Replaces the stock QIconEngine with our own KIconEngine (respects user theme,

provides caching. . .)
– Overrides default key bindings based on KStandardShortcut settings
– Injects the default palette from the settings
– Forces our own QtQuickControls2 theme

• Everything you need to make a Qt application look native in Plasma

KDE Stack Overview and How It All Fit Together 97|

Plasma Integration

• Provides our KDE Platform Theme
• Links against a whole lot of KDE Frameworks

– KIO
– KConfig
– KNotifications
– KIconThemes
– and more. . .

• And remember there’s quite some magic we do just by linking!
• Features

– Integrates menu bars with our global menu
– Integrates system tray icons with KStatusNotifierItem
– Overrides the file dialog with our own implementation
– Replaces the stock QIconEngine with our own KIconEngine (respects user theme,

provides caching. . .)
– Overrides default key bindings based on KStandardShortcut settings
– Injects the default palette from the settings
– Forces our own QtQuickControls2 theme

• Everything you need to make a Qt application look native in Plasma

KDE Stack Overview and How It All Fit Together 98|

Plasma

• This is where we provide implementations for the containments and applets
– Desktop form factor: desktop and panel containments
– Phone form factor: homescreen, panel and taskpanel containments

• Plasma Shell ties it all together
– Comes with its own Corona subclass: ShellCorona
– Loads its own package formats
– Most notably shell packages which control

- How the user can interact with applets (the chrome to move and resize them)
- Which GUI is used for applet or containment settings
- How the widget explorer looks
- Which default layout will be used on first start

– We also have layout template packages
- Allow to prefill containments in the shell
- e.g. that’s how we provide a default panel

– This is all JS and QML based

KDE Stack Overview and How It All Fit Together 98|

Plasma

• This is where we provide implementations for the containments and applets
– Desktop form factor: desktop and panel containments
– Phone form factor: homescreen, panel and taskpanel containments

• Plasma Shell ties it all together
– Comes with its own Corona subclass: ShellCorona
– Loads its own package formats
– Most notably shell packages which control

- How the user can interact with applets (the chrome to move and resize them)
- Which GUI is used for applet or containment settings
- How the widget explorer looks
- Which default layout will be used on first start

– We also have layout template packages
- Allow to prefill containments in the shell
- e.g. that’s how we provide a default panel

– This is all JS and QML based

KDE Stack Overview and How It All Fit Together 99|

KWin

• Our window manager and compositor
• Works on top of X11 or Wayland
• Historically was X11 only

– That still shows a bit in the code
– Transition is on going

KDE Stack Overview and How It All Fit Together 100|

KWin
Platform Abstraction at a Glance

KWin

PlatformWayland
Server

X11 DRM ...

Kernel

X11 Server
(Xorg)

X11 only

Wayland only

Talks to

Talks to

Talks to

Workspace
and

Clients

Creates

• This is a very high level view just to
give a rough idea

• Situation is way more complicated in
the workspace area

– Code very much in transition
– Expect different codepaths to be

executed depending on the platform
• There are good talks and

documentations about KWin, this is
not one of them

KDE Stack Overview and How It All Fit Together 101|

KWin
Focus on Wayland

QtWayland
Scanner

Wayland
Protocol

XML

KWayland

KWin
(Wayland)

KGuiAddons KWindowSystem KIdleTime

QtWayland
QPA

Talks to

Uses

• Protocol files come from wayland-protocols or plasma-wayland-protocols
• Reminder: KWin is a wayland server implementation

KDE Stack Overview and How It All Fit Together 102|

System Settings
Where do the configuration GUIs come from?

• Simple recipe
1. Create the KConfigXT files representing your settings
2. Slap GUI on top of it, mostly two cases:
– QtWidgets based: Inherit from KCModule
– QtQuick based: Inherit from KQuickAddons::ManagedConfigModule

- QML based GUI code is bundled as Qt resources
- Root of the QML script will be a KCM.SimpleKCM or KCM.GridViewKCM

• Plasma workspaces have only QML based KCMs (more Plasma Mobile friendly)
• It is good form nowadays to also provide a KCModuleData from your plugin

– The whole “Highlight Changed Settings” is built on top of it
– This will open the door to other features

- e.g. better settings search

KDE Stack Overview and How It All Fit Together 102|

System Settings
Where do the configuration GUIs come from?

• Simple recipe
1. Create the KConfigXT files representing your settings
2. Slap GUI on top of it, mostly two cases:
– QtWidgets based: Inherit from KCModule
– QtQuick based: Inherit from KQuickAddons::ManagedConfigModule

- QML based GUI code is bundled as Qt resources
- Root of the QML script will be a KCM.SimpleKCM or KCM.GridViewKCM

• Plasma workspaces have only QML based KCMs (more Plasma Mobile friendly)
• It is good form nowadays to also provide a KCModuleData from your plugin

– The whole “Highlight Changed Settings” is built on top of it
– This will open the door to other features

- e.g. better settings search

KDE Stack Overview and How It All Fit Together 102|

System Settings
Where do the configuration GUIs come from?

• Simple recipe
1. Create the KConfigXT files representing your settings
2. Slap GUI on top of it, mostly two cases:
– QtWidgets based: Inherit from KCModule
– QtQuick based: Inherit from KQuickAddons::ManagedConfigModule

- QML based GUI code is bundled as Qt resources
- Root of the QML script will be a KCM.SimpleKCM or KCM.GridViewKCM

• Plasma workspaces have only QML based KCMs (more Plasma Mobile friendly)
• It is good form nowadays to also provide a KCModuleData from your plugin

– The whole “Highlight Changed Settings” is built on top of it
– This will open the door to other features

- e.g. better settings search

KDE Stack Overview and How It All Fit Together 103|

Questions and Answers

• Which are the central concepts in LibPlasma?
• What is provided by a Plasma workspace?
• What does Plasma Integration provide?
• How is the integration between a Wayland session and our frameworks done?
• How to extend System Settings?

KDE Stack Overview and How It All Fit Together 103|

Questions and Answers

• Which are the central concepts in LibPlasma?
• What is provided by a Plasma workspace?
• What does Plasma Integration provide?
• How is the integration between a Wayland session and our frameworks done?
• How to extend System Settings?

KDE Stack Overview and How It All Fit Together 103|

Questions and Answers

• Which are the central concepts in LibPlasma?
• What is provided by a Plasma workspace?
• What does Plasma Integration provide?
• How is the integration between a Wayland session and our frameworks done?
• How to extend System Settings?

KDE Stack Overview and How It All Fit Together 103|

Questions and Answers

• Which are the central concepts in LibPlasma?
• What is provided by a Plasma workspace?
• What does Plasma Integration provide?
• How is the integration between a Wayland session and our frameworks done?
• How to extend System Settings?

KDE Stack Overview and How It All Fit Together 103|

Questions and Answers

• Which are the central concepts in LibPlasma?
• What is provided by a Plasma workspace?
• What does Plasma Integration provide?
• How is the integration between a Wayland session and our frameworks done?
• How to extend System Settings?

KDE Stack Overview and How It All Fit Together 104|

Key Takeaways

• Our workspaces provide essentially
– System services
– Configuration modules
– Styles
– Plasma applets
– Integration plugins
– A shell and a window manager

• This is largely form factor agnostic and this maximizes reusability
• To achieve this we rely quite a bit on scripting and KPackage
• Our KDE Platform Theme for QPA is key to integrate Qt applications in our

workspaces
• KWin has its own platform abstraction layer
• KWin is our wayland server implementation
• System Settings API is mostly provided by KDE Frameworks

KDE Stack Overview and How It All Fit Together 105|

What have we done today?

• We first took a look back at the Qt/KDE history
• We identified some key technologies which go way back in the past
• We better understood the event loop and Qt Platform Abstraction in our context
• We’ve seen the typical patterns in QtWidgets and QtQuick applications and how

they impact reusability in our stack
• We explained how KDE Frameworks is structured as a product
• We also confirmed there are an almost infinite amount of features available
• We explored some of the shady secrets we use for both have splitted frameworks

and a coherent experience when it’s used all together
• We listed what our workspaces contain
• We focused on how Plasma ensures Qt applications integrate with the workspace
• We also got a quick look at how KWin is structured, especially on Wayland
• Unfortunately we didn’t have labs. . .
• Also we’d have needed days to go through the KDE Frameworks section. . .

KDE Stack Overview and How It All Fit Together 105|

What have we done today?

• We first took a look back at the Qt/KDE history
• We identified some key technologies which go way back in the past
• We better understood the event loop and Qt Platform Abstraction in our context
• We’ve seen the typical patterns in QtWidgets and QtQuick applications and how

they impact reusability in our stack
• We explained how KDE Frameworks is structured as a product
• We also confirmed there are an almost infinite amount of features available
• We explored some of the shady secrets we use for both have splitted frameworks

and a coherent experience when it’s used all together
• We listed what our workspaces contain
• We focused on how Plasma ensures Qt applications integrate with the workspace
• We also got a quick look at how KWin is structured, especially on Wayland
• Unfortunately we didn’t have labs. . .
• Also we’d have needed days to go through the KDE Frameworks section. . .

KDE Stack Overview and How It All Fit Together 105|

What have we done today?

• We first took a look back at the Qt/KDE history
• We identified some key technologies which go way back in the past
• We better understood the event loop and Qt Platform Abstraction in our context
• We’ve seen the typical patterns in QtWidgets and QtQuick applications and how

they impact reusability in our stack
• We explained how KDE Frameworks is structured as a product
• We also confirmed there are an almost infinite amount of features available
• We explored some of the shady secrets we use for both have splitted frameworks

and a coherent experience when it’s used all together
• We listed what our workspaces contain
• We focused on how Plasma ensures Qt applications integrate with the workspace
• We also got a quick look at how KWin is structured, especially on Wayland
• Unfortunately we didn’t have labs. . .
• Also we’d have needed days to go through the KDE Frameworks section. . .

KDE Stack Overview and How It All Fit Together 105|

What have we done today?

• We first took a look back at the Qt/KDE history
• We identified some key technologies which go way back in the past
• We better understood the event loop and Qt Platform Abstraction in our context
• We’ve seen the typical patterns in QtWidgets and QtQuick applications and how

they impact reusability in our stack
• We explained how KDE Frameworks is structured as a product
• We also confirmed there are an almost infinite amount of features available
• We explored some of the shady secrets we use for both have splitted frameworks

and a coherent experience when it’s used all together
• We listed what our workspaces contain
• We focused on how Plasma ensures Qt applications integrate with the workspace
• We also got a quick look at how KWin is structured, especially on Wayland
• Unfortunately we didn’t have labs. . .
• Also we’d have needed days to go through the KDE Frameworks section. . .

KDE Stack Overview and How It All Fit Together 105|

What have we done today?

• We first took a look back at the Qt/KDE history
• We identified some key technologies which go way back in the past
• We better understood the event loop and Qt Platform Abstraction in our context
• We’ve seen the typical patterns in QtWidgets and QtQuick applications and how

they impact reusability in our stack
• We explained how KDE Frameworks is structured as a product
• We also confirmed there are an almost infinite amount of features available
• We explored some of the shady secrets we use for both have splitted frameworks

and a coherent experience when it’s used all together
• We listed what our workspaces contain
• We focused on how Plasma ensures Qt applications integrate with the workspace
• We also got a quick look at how KWin is structured, especially on Wayland
• Unfortunately we didn’t have labs. . .
• Also we’d have needed days to go through the KDE Frameworks section. . .

KDE Stack Overview and How It All Fit Together 105|

What have we done today?

• We first took a look back at the Qt/KDE history
• We identified some key technologies which go way back in the past
• We better understood the event loop and Qt Platform Abstraction in our context
• We’ve seen the typical patterns in QtWidgets and QtQuick applications and how

they impact reusability in our stack
• We explained how KDE Frameworks is structured as a product
• We also confirmed there are an almost infinite amount of features available
• We explored some of the shady secrets we use for both have splitted frameworks

and a coherent experience when it’s used all together
• We listed what our workspaces contain
• We focused on how Plasma ensures Qt applications integrate with the workspace
• We also got a quick look at how KWin is structured, especially on Wayland
• Unfortunately we didn’t have labs. . .
• Also we’d have needed days to go through the KDE Frameworks section. . .

KDE Stack Overview and How It All Fit Together 105|

What have we done today?

• We first took a look back at the Qt/KDE history
• We identified some key technologies which go way back in the past
• We better understood the event loop and Qt Platform Abstraction in our context
• We’ve seen the typical patterns in QtWidgets and QtQuick applications and how

they impact reusability in our stack
• We explained how KDE Frameworks is structured as a product
• We also confirmed there are an almost infinite amount of features available
• We explored some of the shady secrets we use for both have splitted frameworks

and a coherent experience when it’s used all together
• We listed what our workspaces contain
• We focused on how Plasma ensures Qt applications integrate with the workspace
• We also got a quick look at how KWin is structured, especially on Wayland
• Unfortunately we didn’t have labs. . .
• Also we’d have needed days to go through the KDE Frameworks section. . .

KDE Stack Overview and How It All Fit Together 105|

What have we done today?

• We first took a look back at the Qt/KDE history
• We identified some key technologies which go way back in the past
• We better understood the event loop and Qt Platform Abstraction in our context
• We’ve seen the typical patterns in QtWidgets and QtQuick applications and how

they impact reusability in our stack
• We explained how KDE Frameworks is structured as a product
• We also confirmed there are an almost infinite amount of features available
• We explored some of the shady secrets we use for both have splitted frameworks

and a coherent experience when it’s used all together
• We listed what our workspaces contain
• We focused on how Plasma ensures Qt applications integrate with the workspace
• We also got a quick look at how KWin is structured, especially on Wayland
• Unfortunately we didn’t have labs. . .
• Also we’d have needed days to go through the KDE Frameworks section. . .

KDE Stack Overview and How It All Fit Together 105|

What have we done today?

• We first took a look back at the Qt/KDE history
• We identified some key technologies which go way back in the past
• We better understood the event loop and Qt Platform Abstraction in our context
• We’ve seen the typical patterns in QtWidgets and QtQuick applications and how

they impact reusability in our stack
• We explained how KDE Frameworks is structured as a product
• We also confirmed there are an almost infinite amount of features available
• We explored some of the shady secrets we use for both have splitted frameworks

and a coherent experience when it’s used all together
• We listed what our workspaces contain
• We focused on how Plasma ensures Qt applications integrate with the workspace
• We also got a quick look at how KWin is structured, especially on Wayland
• Unfortunately we didn’t have labs. . .
• Also we’d have needed days to go through the KDE Frameworks section. . .

KDE Stack Overview and How It All Fit Together 105|

What have we done today?

• We first took a look back at the Qt/KDE history
• We identified some key technologies which go way back in the past
• We better understood the event loop and Qt Platform Abstraction in our context
• We’ve seen the typical patterns in QtWidgets and QtQuick applications and how

they impact reusability in our stack
• We explained how KDE Frameworks is structured as a product
• We also confirmed there are an almost infinite amount of features available
• We explored some of the shady secrets we use for both have splitted frameworks

and a coherent experience when it’s used all together
• We listed what our workspaces contain
• We focused on how Plasma ensures Qt applications integrate with the workspace
• We also got a quick look at how KWin is structured, especially on Wayland
• Unfortunately we didn’t have labs. . .
• Also we’d have needed days to go through the KDE Frameworks section. . .

KDE Stack Overview and How It All Fit Together 105|

What have we done today?

• We first took a look back at the Qt/KDE history
• We identified some key technologies which go way back in the past
• We better understood the event loop and Qt Platform Abstraction in our context
• We’ve seen the typical patterns in QtWidgets and QtQuick applications and how

they impact reusability in our stack
• We explained how KDE Frameworks is structured as a product
• We also confirmed there are an almost infinite amount of features available
• We explored some of the shady secrets we use for both have splitted frameworks

and a coherent experience when it’s used all together
• We listed what our workspaces contain
• We focused on how Plasma ensures Qt applications integrate with the workspace
• We also got a quick look at how KWin is structured, especially on Wayland
• Unfortunately we didn’t have labs. . .
• Also we’d have needed days to go through the KDE Frameworks section. . .

KDE Stack Overview and How It All Fit Together 105|

What have we done today?

• We first took a look back at the Qt/KDE history
• We identified some key technologies which go way back in the past
• We better understood the event loop and Qt Platform Abstraction in our context
• We’ve seen the typical patterns in QtWidgets and QtQuick applications and how

they impact reusability in our stack
• We explained how KDE Frameworks is structured as a product
• We also confirmed there are an almost infinite amount of features available
• We explored some of the shady secrets we use for both have splitted frameworks

and a coherent experience when it’s used all together
• We listed what our workspaces contain
• We focused on how Plasma ensures Qt applications integrate with the workspace
• We also got a quick look at how KWin is structured, especially on Wayland
• Unfortunately we didn’t have labs. . .
• Also we’d have needed days to go through the KDE Frameworks section. . .

KDE Stack Overview and How It All Fit Together 106|

Thank You!

Questions?
ervin@kde.org

kevin.ottens@enioka.com

mailto:Kevin Ottens <ervin@kde.org>
mailto:Kevin Ottens <kevin.ottens@enioka.com>

	History
	Anatomy of a Qt Application
	Anatomy of a KDE Application
	KDE Frameworks
	KDE Plasma

