
default

The State of (the) Union

Arjen Hiemstra Akademy 2025

mailto:Akademy 2025


default

1 What Is This Union Thing Again?

2 Current State

3 CSS as Input Format

4 Making Use of It

5 What’s Next

The State of (the) Union | Arjen Hiemstra 2/35



default

4 Applications, 4 Ways to Style

QtWidgets

QtQuick

SVG

QtQuick... but different

The State of (the) Union | Arjen Hiemstra 3/35



default

The Problems

Any change requires 4 different implementations
Implementation requires deep developer
knowledge
Some implementations do not make full use of
platform features

The State of (the) Union | Arjen Hiemstra 4/35



default

A Potential Solution

Input Intermediate Output

Strictly separate “input” from “output”
Define an “intermediate layer” common to both
Input produces and output consumes
intermediate data

The State of (the) Union | Arjen Hiemstra 5/35



default

Implementation Plan

Initial focus on a QtQuick
Controls style as output
Use Plasma’s SVGs as input
as it has known results
Define the core library, then
revist input/output

The State of (the) Union | Arjen Hiemstra 6/35



default

1 What Is This Union Thing Again?

2 Current State

3 CSS as Input Format

4 Making Use of It

5 What’s Next

The State of (the) Union | Arjen Hiemstra 7/35



default

Discover

The State of (the) Union | Arjen Hiemstra 8/35



default

Also Discover

The State of (the) Union | Arjen Hiemstra 9/35



default

QtQuick Controls

Lots of QtQuick Controls
covered
Some Controls API details still
to work out
Several newer controls have
no Breeze styling yet

The State of (the) Union | Arjen Hiemstra 10/35



default

Kirigami

Kirigami integration plugin for
units etc.
Overrides to allow theming
custom Kirigami controls
Some trouble with certain
controls

The State of (the) Union | Arjen Hiemstra 11/35



default

QtQuick API details

QtQuick API working mostly
through attached properties
Custom renderer for
rectangles
Item subcontrol layout based
on style information

The State of (the) Union | Arjen Hiemstra 12/35



default

Input Format

Initial implementation using
Plasma SVG styling
SVG alone not enough,
needed lots of extra
information
It works, but is not future
proof

The State of (the) Union | Arjen Hiemstra 13/35



default

1 What Is This Union Thing Again?

2 Current State

3 CSS as Input Format

4 Making Use of It

5 What’s Next

The State of (the) Union | Arjen Hiemstra 14/35



default

Requirements for a New Input Format

No logic
Easy to change
Extensible to many different things

The State of (the) Union | Arjen Hiemstra 15/35



default

Advantages of CSS

body {
color: black;
background-color: #fff;

}

h1 {
font-size: 20pt;
color: rgba(128, 0, 255, 0.9);

}

It is well known
It is very actively developed
It is designed to abstractly
describe a style

The State of (the) Union | Arjen Hiemstra 16/35



default

Disadvantages

body {
color: black;
background-color: #fff;

}

h1 {
font-size: 20pt;
color: rgba(128, 0, 255, 0.9);

}

A lot of its design is geared
towards Web
Nearly all implementations are
coupled to web browsers
Those that are not do not
implement modern CSS

The State of (the) Union | Arjen Hiemstra 17/35



default

Enter Servo

Servo is a web engine written
in Rust
Started by Mozilla
Setup to be quite modular

The State of (the) Union | Arjen Hiemstra 18/35



default

The cssparser Crate

A Rust crate for parsing CSS
Used by Servo to build its CSS
parser
Implements many modern
CSS features

The State of (the) Union | Arjen Hiemstra 19/35



default

Building a CSS Parser

cssparser is more of a toolkit to build a CSS
parser with
Some extra helper crates for parsing selectors
and colors
No real data structures
Quite some glue code needed for it to be useful

The State of (the) Union | Arjen Hiemstra 20/35



default

Integrating Rust

Union is a C project
Rust code can be integrated
through helper crates like cxx
Decided to create a
stand-alone library for CSS
parsing

The State of (the) Union | Arjen Hiemstra 21/35



default

cxx-rust-cssparser

C wrapper around Rust core
Abstract representation of a CSS file
Designed as mostly generic library

The State of (the) Union | Arjen Hiemstra 22/35



default

1 What Is This Union Thing Again?

2 Current State

3 CSS as Input Format

4 Making Use of It

5 What’s Next

The State of (the) Union | Arjen Hiemstra 23/35



default

Selectors

Selectors define what
properties to apply to which
elements
Union has the exact same
concept
Certain selectors can be
directly mapped

body p > span::first-child {
}
nav li.active a[href] {
}

The State of (the) Union | Arjen Hiemstra 24/35



default

Selectors: Example

T.Button {
Element.type: "button"
Element.states {

hovered: control.hovered
pressed: control.pressed

}
Element.hints: ["primary"]

}

button {
}

button:hovered {
}

button.primary:pressed {
}

The State of (the) Union | Arjen Hiemstra 25/35



default

Properties

Properties indicate what
changes to make to an
element
Web’s properties do not
necessarily match Union
cxx-rust-cssparser makes no
assumptions about properties

button {
color: red;
background-color: black;
padding: 4px;

}

The State of (the) Union | Arjen Hiemstra 26/35



default

“Custom” Properties

button {
width: 24px;
height: 24px;
spacing: 4px;
padding: 8px;
border-radius: 4px;

}

Parser needs to know about
properties to parse them
correctly
Custom property syntax
introduced for CSS
Union defines all its properties
using that syntax
Match web properties where
possible and it makes sense

The State of (the) Union | Arjen Hiemstra 27/35



default

Functions

CSS functions can add quite
useful functionality
Unfortunately, almost all
require manual
implementation
Due to this, only a handful
implemented

--medium-element-size: 24px;

width: var(--medium-element-size);
height: var(--medium-element-size);
color: mix(#000, #fff, 0.5);

The State of (the) Union | Arjen Hiemstra 28/35



default

Conclusions

CSS fits our usecase very well
Implementation was not straightforward
Future-proof solution that gives a lot of power
and flexibility

The State of (the) Union | Arjen Hiemstra 29/35



default

1 What Is This Union Thing Again?

2 Current State

3 CSS as Input Format

4 Making Use of It

5 What’s Next

The State of (the) Union | Arjen Hiemstra 30/35



default

First Release!

“Tech Preview” once QtQuick Controls style is
mostly complete
Will contain CSS version of Breeze
Should be future-proof enough to allow new
development

The State of (the) Union | Arjen Hiemstra 31/35



default

A New Style

Plasma Next has been
working on a design system
Eventually hopes to build a full
application style
Will probably need extra
development on Union

The State of (the) Union | Arjen Hiemstra 32/35



default

Expand CSS Capabilities

More advanced fills: Gradients, Textures
More selectors and combinators
Animations

The State of (the) Union | Arjen Hiemstra 33/35



default

More Outputs

QtWidgets output started, but
needs more work
Potentially add integration
outputs similar to Kirigami
Other projects with styling
such as decorations

The State of (the) Union | Arjen Hiemstra 34/35



default

Questions?

Find the code at:
https://invent.kde.org/plasma/union

Discuss things:
#union:kde.org

The State of (the) Union | Arjen Hiemstra 35/35


	What Is This Union Thing Again?
	Current State
	CSS as Input Format
	Making Use of It
	What's Next

