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4 Applications, 4 Ways to Style

QtWidgets

QtQuick

SVG

QtQuick... but different
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The Problems

Any change requires 4 different implementations
Implementation requires deep developer
knowledge
Some implementations do not make full use of
platform features
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A Potential Solution

Input Intermediate Output

Strictly separate “input” from “output”
Define an “intermediate layer” common to both
Input produces and output consumes
intermediate data
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Implementation Plan

Initial focus on a QtQuick
Controls style as output
Use Plasma’s SVGs as input
as it has known results
Define the core library, then
revist input/output
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Discover
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Also Discover
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QtQuick Controls

Lots of QtQuick Controls
covered
Some Controls API details still
to work out
Several newer controls have
no Breeze styling yet
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Kirigami

Kirigami integration plugin for
units etc.
Overrides to allow theming
custom Kirigami controls
Some trouble with certain
controls
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QtQuick API details

QtQuick API working mostly
through attached properties
Custom renderer for
rectangles
Item subcontrol layout based
on style information
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Input Format

Initial implementation using
Plasma SVG styling
SVG alone not enough,
needed lots of extra
information
It works, but is not future
proof
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Requirements for a New Input Format

No logic
Easy to change
Extensible to many different things
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Advantages of CSS

body {
color: black;
background-color: #fff;

}

h1 {
font-size: 20pt;
color: rgba(128, 0, 255, 0.9);

}

It is well known
It is very actively developed
It is designed to abstractly
describe a style
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Disadvantages

body {
color: black;
background-color: #fff;

}

h1 {
font-size: 20pt;
color: rgba(128, 0, 255, 0.9);

}

A lot of its design is geared
towards Web
Nearly all implementations are
coupled to web browsers
Those that are not do not
implement modern CSS
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Enter Servo

Servo is a web engine written
in Rust
Started by Mozilla
Setup to be quite modular
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The cssparser Crate

A Rust crate for parsing CSS
Used by Servo to build its CSS
parser
Implements many modern
CSS features
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Building a CSS Parser

cssparser is more of a toolkit to build a CSS
parser with
Some extra helper crates for parsing selectors
and colors
No real data structures
Quite some glue code needed for it to be useful
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Integrating Rust

Union is a C project
Rust code can be integrated
through helper crates like cxx
Decided to create a
stand-alone library for CSS
parsing
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cxx-rust-cssparser

C wrapper around Rust core
Abstract representation of a CSS file
Designed as mostly generic library
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Selectors

Selectors define what
properties to apply to which
elements
Union has the exact same
concept
Certain selectors can be
directly mapped

body p > span::first-child {
}
nav li.active a[href] {
}
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Selectors: Example

T.Button {
Element.type: "button"
Element.states {

hovered: control.hovered
pressed: control.pressed

}
Element.hints: ["primary"]

}

button {
}

button:hovered {
}

button.primary:pressed {
}

The State of (the) Union | Arjen Hiemstra 25/35



default

Properties

Properties indicate what
changes to make to an
element
Web’s properties do not
necessarily match Union
cxx-rust-cssparser makes no
assumptions about properties

button {
color: red;
background-color: black;
padding: 4px;

}
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“Custom” Properties

button {
width: 24px;
height: 24px;
spacing: 4px;
padding: 8px;
border-radius: 4px;

}

Parser needs to know about
properties to parse them
correctly
Custom property syntax
introduced for CSS
Union defines all its properties
using that syntax
Match web properties where
possible and it makes sense
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Functions

CSS functions can add quite
useful functionality
Unfortunately, almost all
require manual
implementation
Due to this, only a handful
implemented

--medium-element-size: 24px;

width: var(--medium-element-size);
height: var(--medium-element-size);
color: mix(#000, #fff, 0.5);
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Conclusions

CSS fits our usecase very well
Implementation was not straightforward
Future-proof solution that gives a lot of power
and flexibility
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First Release!

“Tech Preview” once QtQuick Controls style is
mostly complete
Will contain CSS version of Breeze
Should be future-proof enough to allow new
development
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A New Style

Plasma Next has been
working on a design system
Eventually hopes to build a full
application style
Will probably need extra
development on Union
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Expand CSS Capabilities

More advanced fills: Gradients, Textures
More selectors and combinators
Animations

The State of (the) Union | Arjen Hiemstra 33/35



default

More Outputs

QtWidgets output started, but
needs more work
Potentially add integration
outputs similar to Kirigami
Other projects with styling
such as decorations
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Questions?

Find the code at:
https://invent.kde.org/plasma/union

Discuss things:
#union:kde.org
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